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Abstract—As essential work in IT operations, anomaly lo-
calization, aiming to identify the affected scope of Internet
infrastructure once an anomaly alarm occurs, is challenging
due to the huge search space. The existing solutions usually
show limited performances in the CDN scenario since they take
the desirable assumptions that do not match with the practical
anomaly pattern features. To address this issue, in this paper, we
propose RAPMiner, which first uses a classification power-based
redundant attribute deletion to prune the non-root cause attribute
combinations, and then adopts an anomaly confidence-guided
layer-by-layer top-down search to avoid searching for anomaly
but non-root patterns. Both of them are effective in narrowing
the search space. Experimental results show that RAPMiner can
achieve comparable performance with the SOTA approach on the
published Squeeze dataset according to F1-score and efficiency,
as well as the best RC@k with stable parameter sensitivity on
the RAPMD.

Index Terms—Anomaly localization, root anomaly pattern
(RAP), cuboid, attribute combination

I. INTRODUCTION

Due to the increasing complexity and growing scale of
today’s Internet infrastructures, failure on devices and service
degradation are inevitable. To detect these failures and con-
duct service quality management, human operators measure
and monitor various Key Performance Indicators (KPIs) [1]–
[7]. Once an anomaly alarm occurs, it usually indicates the
potential failure or service degradation for the system or Inter-
net infrastructure, e.g., configuration errors, software defects,
network and server machine overload or failures, etc., [1], [8]–
[17]. To rapidly respond to these issues before they cause more
critical performance degradation and guarantee the quality of
experience (QoE) for users, anomaly localization is further
needed in IT operations, i.e., to identify the affected scope of
the specific system or infrastructure when it is triggered by
an anomaly alarm and then switch the impacted users to the
backup system timely.

As one of the most critical Internet infrastructures, Content
Delivery Networks (CDNs) play a crucial role in delivering
Internet content and guaranteeing high QoE [18]–[20]. With
the growing scale, edge nodes of today’s commercial CDN
usually sink to districts or counties, providing services for
hundreds or even thousands of websites in delivering content
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Fig. 1. IT operations in CDN Infrastructure

for various users. It is a great challenge to conduct IT
operations for such a large distributed Internet infrastructure.
The pioneering study [1] only focuses on anomaly detection
for CDN to give an alarm, however, lacks anomaly localization
to help identify the affected scope of the failure and provide
human operators some clues for further trouble-shooting or
root cause analysis. Via discussing with human operators,
we are aware that the anomaly localization for the current
CDN system mainly relies on manual work, i.e., mining the
clues from massive data manually which is a very complex
and time-consuming process. In this context, the need for an
automatic method that conducts anomaly localization for CDN
effectively and efficiently is urgent.

To this end, we start our work with a careful analysis of a
real-world ISP-operated CDN in China. As shown in Fig. 1
right, users that are served by CDN can be characterized by a
four-tuple or called attribute combination, i.e., the location of
edge node, access type, operating system (OS) of the device,
and the website that the user surfs. In practice, anomaly
localization usually depends on KPIs with varying-grained
attribute combinations. KPI for a fine-grained attribute com-
bination usually indicates the performance or service status
of the more specific scope generally, e.g., KPI for a four-
tuple (L1, wireless, Android, Site1) represents the performance
of “Android” users that try to request the contents from
“Site1” and are served by the edge nodes at location “L1” via
“wireless” network. While KPI for a coarse-grained attribute
combination, e.g., (L1, *, *, Site1) indicates the service status
of the users that request content from “Site1” and are served
by the edge nodes at location “L1”, regardless of the OS for



TABLE I
ATTRIBUTES OF CDN SYSTEM

Location (33) Access Type (4) OS (4) Website (20)
L1 Wireless Android Site1
L2 Fixed IOS Site2
... ... ... ...

device and access type. The goal of anomaly localization is
to find the attribute combination with the coarsest granularity
among all of the attribute combinations whose KPIs present
anomalous. Some studies call such attribute combination the
root cause of the anomaly [21], [22] with its being the parent
of all other attribute combinations with anomalous KPIs, or
an effective combination of the emerging issue [14]. In this
paper, we call it Root Anomaly Pattern (RAP). In the above
example, comparing with (L1, wireless, Android, Site1), (L1,
*, *, Site1) is more likely the RAP, since it describes more
general characteristics among the affected scope.

Even though the existing studies have focused on mining
root anomaly patterns for various Internet infrastructures or
applications, however, the careful analysis still underscores
the following two main challenges of mining root anomaly
patterns for the real-world CDN.

Challenge 1: Huge Search Space. Table I shows some
elements in each attribute for the real-world CDN that we
studied, e.g., there are 33 specific elements in the attribute
named “Location”. Since the search space usually increases
exponentially with the number of attributes and attribute
elements as illustrated in [21], the search space in the CDN
scenario will be up to 220×33×4×4. Consequently, such a
huge space is a big challenge in designing an automatic
algorithm to solve the infeasibility of manual localization of
root anomaly patterns. The existing studies usually narrow
the search space through some highly strict assumptions.
For example, Adtributor [13] assumes that the root anomaly
pattern is only a 1-dimensional attribute combination, and
HotSpot [21] assumes that all of the root anomaly patterns
are only located in a single cuboid. Both Squeeze [22] and
HotSpot [21] assume the same anomaly magnitude for all
attribute combinations under the same failure, i.e., the same
relative deviation between the predicted value and the actual
value of KPI. Besides, Squeeze also assumes varying anomaly
magnitude for attribute combinations under different failures
to combine clustering with searching. However, the careful
analysis of the real-world ISP-operated CDN suggests that
assumptions in existing methods are more desirable which
limit their usefulness in the real-world CDN.

Challenge 2: Determination Rule for RAP. Obviously, the
root anomaly patterns should exhibit the specific features that
are apart from the non-root anomaly patterns. The challenge
lies in how to characterize or describe such differences be-
tween the root and non-root anomaly patterns, i.e., how to
determine the root anomaly patterns via a determination rule.
Existing studies usually try to solve this issue by introducing
the corresponding quantitative metrics for the specific scenar-
ios. For example, HotSpot [21] introduces the ripple effect to

characterize the magnitude relationship between the root cause
attribute combinations and its “descendant” attribute combina-
tions. Squeeze [22] further proposes a generic one, i.e., the
generalized ripple effect for both fundamental and derived
KPIs. Besides, iDice [14] identifies the effective combination
via a metric called “Isolation Power”, etc. Even though these
quantitative metrics show effectiveness, however, some of
them depend on the specific scenarios with corresponding
assumptions. Hence, a proper determination rule is necessary
for root anomaly patterns of the real-world CDN.

To cope with the limitations of previous work in tackling
the two challenges above, in this paper, we propose a Root
Anomaly Pattern Miner (RAPMiner), which considers the
practical distribution features of root anomaly patterns to avoid
the ideal assumptions, so as to be more practical without loss
of effectiveness and efficiency. Specifically, RAPMiner first
proposes a metric called Classification Power (CP) to deter-
mine whether an attribute is independent of a root anomaly
pattern, and then combines it with the other metric called
Anomaly Confidence (AC), which judges whether an attribute
combination is anomalous or not, thus to address the second
challenge above. Accordingly, RAPMiner solves the problem
of mining root anomaly patterns in two stages: CP-based
Redundant Attribute Deletion to prune the non-root cause
attribute combinations and AC-guided Layer by Layer Top-
down Search to avoid searching for anomaly but non-root
patterns. Both two steps are effective in narrowing the search
space, tackling the first challenge above. The contributions of
this paper are summarized as follows.

• We propose RAPMiner, a framework for root anomaly
patterns mining, which can localize root anomaly patterns
effectively and efficiently without strict assumptions.

• We develop a highly efficient metric named classification
power that can significantly reduce the search space by
deleting redundant attributes. Our analysis demonstrates
that even if only one attribute is pruned, the total search
space will be narrowed by at least 50%.

• By injecting failures into the data collected from a large
ISP-operated CDN in China, we create a semi-synthetic
dataset and call it RAPMD. We refer to the real-world
root anomaly patterns in failures injection procedures, so
as to avoid the ideal root anomaly patterns in RAPMD.

• Experiments are conducted on two datasets including
RAPMD to show the effectiveness of RAPMiner in CDN,
and the semi-synthetic dataset published by Squeeze to
illustrate its usefulness in other scenarios. The results
show that RAPMiner achieves a comparable F1-score
with the existing methods on the Squeeze dataset, and
significantly outperforms the state-of-the-art approaches
with regard to RC@k on RAPMD with stable parameters
sensitivity. Besides, the running time experiments also
show the efficiency of the proposed RAPMiner. For
allowing experiment reproduction, we have released our
source codes via GitHub at https://github.com/liuchang-
sophie/RAPMiner.
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Fig. 2. The Hierarchical Structure of Cuboids

II. BACKGROUND

In this section, we first introduce the IT operations in
CDN infrastructure. Then, we will illustrate some details via
examples, e.g., basic concepts, to further help understand the
anomaly localization in CDN.

A. IT Operations in CDN

Fig. 1 left shows a typical CDN infrastructure. In CDN,
the edge nodes cache the contents of various websites and
usually sink to districts or counties which are very closed to
users. When HTTP requests are sent by Internet users, the
scheduling center gives priority to providing content to users
from edge nodes via the front-haul link, or otherwise retrieving
the contents from the upper depository firstly via the back-haul
network, then sending them to users when a cache miss occurs.

To conduct service quality management for CDN, human
operators usually collect and monitor various CDN KPIs, such
as traffic volume, cache hit ratio and server response delay,
etc. Once an anomaly alarm occurs, anomaly localization is
triggered. As shown in Fig. 1 right, a four-tuple (L1, Wireless,
Android, Site1) indicates the “Android” users surf the “Site1”
and are served by the edge node at location “L1” via the
“wireless” network, however, services failed, unfortunately.
Compared these impacted users with those in a four-tuple
(L1, Wireless, IOS, Site1) which are served successfully, it
is not hard for us to observe that the “OS” attribute with
the “Android” element may be the issue. Similarly, since the
service for users that characterized by (L2, Fixed, IOS, Site1)
is failed, while users belonging to (L2, Fixed, IOS, Site2)
are served successfully, thus there is probably the failure of
“Site1”. In this case, clues provided by anomaly localization
enable human operators timely to switch the impacted users
to edge sites in “L1” to guarantee the QoE.

B. Analysis for Search Space

As mentioned above, the impacted scope of the ISP-
operated CDN can be characterized by four attributes, i.e.
location, access type, OS of the device and website user surfs.
Each attribute has various elements which can form many
different attribute combinations. Consistent with HotSpot [21],
we use cuboids to divide these attribute combinations. As
shown in Fig. 2, there are 15 cuboids in the 4-attribute CDN

Layer 1 (L1, *, *, *) (*, *, *, Site1) Other Combinations

Layer 2 (L1, *,*,Site1) Other Combinations

Layer 3 (L1, Wireless, *, Site1) (L1, Fixed, *, Site1) Other Combinations

Layer 4 (L1, Wireless, Android, Site1) (L1, Fixed, Android, Site1)

Other Combinations(L1, Wireless, IOS, Site1) (L1, Fixed, IOS, Site1)

Fig. 3. The Root Anomaly Pattern

system with the generalized form 2n−1 where n is the number
of attributes. These cuboids locate in four layers, which are
1-dimensional cuboids with only one attribute, 2-dimensional
cuboids with two attributes, 3-dimensional cuboids with three
attributes, and 4-dimensional cuboids with four attributes
respectively. There is an obvious parent-child relationship
between the layers. For example, cuboid CL is only composed
of Location and contains only 33 attribute combinations, while
cuboid CL,S is composed of Location and Website which
contains 660(= 20 × 33) attribute combinations. The worst
case is that cuboid CL,A,O,S is composed of all attributes, and
the number of attribute combinations it contains has reached
10560(= 20× 33× 4× 4).

C. Anomaly Localization in CDN: an Example Analysis

When a failure alarm occurs, the overall KPI of the CDN
usually shows abnormal behaviors. There may be an anomaly
in the KPI curves of many attribute combinations in all cuboids
shown in Fig. 2, but actually not every attribute combination
showing abnormal behavior will be called the root anomaly
pattern. This is because of the inclusion and parent-child
relationship between attribute combinations, i.e., the affected
scope covered by the higher attribute combination contains
the scope characterized by the lower attribute combination and
only those attribute combinations that present anomalies and
no longer have the parents presenting anomalies can be called
root anomaly patterns. As shown in Fig. 3, the KPI curves
of attribute combinations (L1, *, *, Site1), (L1, Wireless, *,
Site1), (L1, Fixed, *, Site1), (L1, Wireless, IOS, Site1), (L1,
Wireless, Android, Site1), (L1, Fixed, IOS, Site1) and (L1,
Fixed, Android, Site1) all show abnormal behaviors when an
anomalous alarm occurs. However, since (L1, *, *, Site1) is
the ancestor of all other anomalous attribute combinations,
covering the impacted scope of all other anomalous attribute
combinations, hence it is the RAP we want to identify.

III. PROBLEM DEFINITION

Before introducing the problem definition, we define some
of the notations in Table II which will be used later.

A. KPI

KPIs collected in real-world Internet infrastructures are
mainly classified into two categories. One category is the



TABLE II
SUMMARY OF NOTATIONS

Notations Definations
ac Attribute Combination
attr Attribute

CubAttributeSet
Cuboid consisting of attribute combinations

which have the same attributes
v Actual Value
f Forecast Value
D Basic Dataset, i.e. CubA,B,C,D

Dattri
Sub-dataset which is produced from the

basic dataset D and contains attri
CPattr The classified power of the specific attribute

tCP

The threshold of classification power to
determine whether some attribute is
redundant, in the form of percentage

tconf

The threshold of confidence to determine
whether some attribute combination is

anomalous, in the range of (0, 1)

Layer
The index of the layer that some attribute

combination locates in

Parents()
The function to get the parent set of some

attribute combination
Elem() The function to get elements of some attribute

l()
The function to get the number of elements

for each attribute

AttributeSet()
The function to get the attribute set of

some attribute combinations

Info()
The function to get the information entropy of

the dataset according to Shannon Theory

Infoattr()
The function to get the sum of information

entropy of all of the datasets which are formed
by dividing the dataset D with some attribute

Confidence() The function to get the confidence
support countD() The function to get the support on dataset D

Descendants()
The function to get all of the descendants of

some attribute combination

fundamental KPI, and the other is the derived KPI [13]. In
the scenario of ISP-operated CDN, human operators usually
collect and aggregate the fundamental KPIs of the most fine-
grained attribute combinations once an anomaly alarm is
triggered. Since the fundamental KPIs are generally additive,
the KPIs of the coarse-grained attribute combinations in the
higher layers can be obtained from the KPIs of the fine-
grained attribute combinations in the lower layers, as shown
in Fig. 4. Even though the derived KPIs are non-additive, we
can obtain them from fundamental KPIs through a series of
transformations, i.e. KD = g(KF

1 ,KF
2 , ...,KF

m), where KF

is fundamental KPI and KD is derived KPI, and g is the
specific functions. Therefore, as shown in Fig. 4 we can first
obtain the fundamental KPIs of the coarse-grained attribute
combinations in higher layers via the aggregation from the
lower layers and further get the derived KPIs through the
specific transformations.

B. Root Anomaly Pattern (RAP)

Based on the description of the root anomaly pattern in
Section II, we now define it precisely. We denote the attribute
combination as ac.

Definition 1 (Root Anomaly Pattern, RAP): If ac is an
anomalous attribute combination, and @ac′ ∈ Parents(ac) is
an anomalous attribute combination, then ac is a RAP.
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Fig. 4. The Aggregated Process of Fundamental KPI

C. Problem Definition

For the sake of the description, we still use a four-tuple
attribute combination to elaborate the problem definition. Note
that the number of attributes can be generalized to any value.
We denote the attribute set for the impacted scope S as
AttributeSet(S) = {A,B, C,D}, and the element sets for
these attributes are denoted as Elem(A) = {a1, a2, ..., al(A)},
Elem(B) = {b1, b2, ..., bl(B)}, Elem(C) = {c1, c2, ..., cl(C)}
and Elem(D) = {d1, d2, ..., dl(D)} respectively, where l(A),
l(B), l(C) and l(D) indicate the number of elements for each
attribute. Then, we divide the cuboids composed of these four
attributes into four layers. Where cuboids in the first layer only
contain an individual attribute, and cuboids in the second layer
can be obtained by the Cartesian product of any two attributes,
so as the third and the fourth layers, as shown in Fig. 2. We
formulate the cuboid as follows and only show the example
of one cuboid for each layer.

CubA = {(a1, ∗, ∗, ∗), ..., (al(A), ∗, ∗, ∗)},
length = l(A).
CubA,B = {(a1, b1, ∗, ∗), ..., (al(A), bl(B), ∗, ∗)},
length = l(A)× l(B).
CubA,B,C = {(a1, b1, c1, ∗), ..., (al(A), bl(B), cl(C), ∗)},
length = l(A)× l(B)× l(C).
CubA,B,C,D = {(a1, b1, c1, d1), ..., (al(A), bl(B), cl(C), dl(D))},
length = l(A)× l(B)× l(C)× l(D).

As for the impacted scope characterized in the four-tuple,
CubA,B,C,D is the set of the most fine-grained attribute combi-
nations. Each element in this set is a leaf attribute combination.
They only have ancestors but no descendants. The real value
of KPIs for each element in the CubA,B,C,D can be obtained
in the data collection phase, and we can get the corresponding
predicted values via some prediction methods. We denote the
actual and predicted value as v and f , respectively. Examples
of the data are shown in Table III. Since many existing studies
have focused on prediction techniques [1], [2], [15], [23], [24],
we do not take the prediction methods as our primary work
in this paper.

To sum up, mining of root anomaly patterns can be ex-
pressed as: given the actual value v and predicted value f
of the corresponding KPIs for the most fine-grained attribute
combination set CubA,B,C,D, how we can quickly and accu-
rately mine the RAPs of the impacted scope S.



TABLE III
THE DATA FORM OF THE MOST FINE-GRAINED ATTRIBUTE

COMBINATION

Attribute Combination v f
(a1, b1, c1, d1) 10.0 5.0
(a1, b1, c1, d2) 23.0 20.5

... ... ...
(al(A), bl(B), cl(C), dl(D)) 101.2 125.8

IV. ROOT ANOMALY PATTERN MINER

A. Insights

Through a careful analysis of the real-world CDN dataset,
we underscore two domain-specific insights as follows.

1) Insight 1: If an attribute is in the root anomaly patterns,
this attribute has some degree of classification power for the
entire most fine-grained attribute combinations, namely normal
or abnormal.

2) Insight 2: If an attribute combination is a root anomaly
pattern, most of its children should be anomalous, while all of
its parents should not be anomalous. In other words, if only a
small part of its child attribute combinations are anomalous or
anyone parent is anomalous, such attribute combination should
not be considered as a RAP .

B. Framework

Fig. 5 shows the overall framework of RAPMiner, which
mainly consists of two parts: a CP-based Redundant Attribute
Deletion and an AC-guided Layer by Layer Top-down Search.
Specifically, the classification power-based redundant attribute
deletion is designed for pruning the non-root cause attribute
combinations. As illustrated in Section I, even if only one
attribute is deleted, it will narrow about 50% of the search
space. Besides, we also adopt Anomaly Confidence-guided
Layer by Layer Top-down Search to avoid searching for
anomaly but non-root patterns. Then, RAPMiner can traverse
the search space layer by layer from top to bottom based
on Breadth-First Search (BFS). The intuition is that if the
currently searched attribute combination is anomalous and
is considered as a RAP, the child attribute combinations are
certainly not RAPs and can be pruned off directly. The input
of RAPMiner is the anomaly detection results for KPIs of the
most fine-grained attribute combinations. The existing studies
usually use different localizing strategies for fundamental KPIs
and derived KPIs, especially in the design of root cause scores.
However, there is no need to differentiate KPIs in RAPMiner,
because RAPMiner only uses the anomaly detection results
for the most fine-grained attribute combinations and does not
care about whether they are fundamental or derived KPIs.
Since the anomaly detection for the most fine-grained attribute
combinations can be done directly in the data collection stage
without subsequent aggregation, the method is more general
and helps save the data aggregation time.

C. Classification Power Based Redundant Attribute Deletion

It can be observed from Insight 1 that if an attribute is in the
root anomaly patterns, using it to divide the dataset composed
of the most fine-grained attribute combinations will reduce
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(a1, b1, c1, d1), 2.0, 5.0
(a1, b1, c1, d2), 10.5, 21

… ...
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Fig. 5. The Framework of RAPMiner
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information entropy [25]–[27]. When an attribute is selected
to classify the dataset, i.e., divide the dataset into several sets
according to the specific element in the attribute, as shown
in Fig. 6, if it can hardly reduce the information entropy of
the whole dataset, it is considered that the attribute has almost
no ability to classify the dataset intuitively. Thus it cannot
be an attribute in the root anomaly patterns. In other words,
such an attribute is redundant and has nothing to do with the
anomalies. In this way, we can delete redundant attributes
before searching root anomaly patterns based on Insight 1
to narrow the search space and improve the efficiency in
localizing the root anomaly patterns. Actually, there are many
redundant attributes when a failure occurs in the real-world
system. We also observe that the root anomaly patterns are
mostly in the higher-layer cuboids in Fig. 2. We will later show
that removing redundant attributes may dramatically improve
the efficiency of the latter search process.

Fig. 6 shows a simple example. Let D be a dataset com-
posed of all the most fine-grained attribute combinations of
attributes A, B and C. The elements in attribute A are a1, a2
and a3, the elements in attribute B are b1, b2, and the elements
in attribute C are c1, c2. We assume that (a1, ∗, ∗) is the RAP .
If we use attribute A to divide the dataset D, D tends to
be more orderly, due to the fact that all of the most fine-
grained anomalous attribute combinations related to a1 can be
classified into the anomalous set Da1

and the rest of sets Da2

and Da3
may only contain the normal attribute combinations,

as shown in Fig. 6 left. Thus the overall dataset entropy after
the partition will be smaller than that when using attribute B or
C to divide D. On the contrary, as shown in Fig. 6 middle, both
the anomalous and normal attribute combinations are likely to
be divided into the sets Db1 and Db2 simultaneously when
we use attribute B to separate D. Note that the anomalous
parts in Db1 and Db2 are derived from the most fine-grained
anomalous attribute combinations that related to a1. So similar
results when we apply attribute C to classify D.

To sum up, we introduce the Classification Power (CP ) to
indicate how likely an attribute will be in RAPs by quantifying
the entropy reduction when applied to divide the dataset of the



most fine-grained attribute combinations. The bigger the CP
is, the more likely the attribute is to be in RAPs. Specifically,
we formulate CP as:

CPattr =
Info(D)− Infoattr(D)

Info(D)
(1a)

Info(D) = −(palogpa + pnlogpn) (1b)

Infoattr(D) = −
n∑

i=1

|Dattri |
|D| (pattria logpattria + pattrin logpattrin )

(1c)

where, pa denotes the probability of abnormal attribute com-
binations in the dataset, while pn denotes the probability
of normal ones in the dataset. pattria is the probability of
anomalous attribute combinations in attribute attri branch,
while pattrin indicates the probability of normal ones in attri
branch. Based on Eq.1, we define a Criteria to determine
whether an attribute is redundant or not below.

Criteria 1: ∀attr ∈ AttributeSet(RAPs), CPattr > tCP ,
tCP is a threshold with a very small value. Otherwise when
CPattr ≤ tCP , attr /∈ AttributeSet(RAPs).

Note that tCP is a threshold in the form of percentage. The
smaller the selected tCP , the more strict standard for redundant
attributes judgment, i.e., the classification power of an attribute
must be extremely small before it can be considered as
redundant, and thus the fewer redundant attributes can be
deleted. On the contrary, when the selected tCP is larger, it
indicates that the judgment standard of redundant attributes is
more relaxed, i.e., an attribute can be considered redundant if
its classification power is less than a relatively small value. In
this way, more redundant attributes can be deleted to improve
the efficiency, with the sacrifice of accuracy.

Based on Criteria 1, we can remove all redundant attributes
before searching for the root anomaly patterns. Proof 1 demon-
strates that deleting redundant attributes can significantly nar-
row the search space. In addition, Table IV shows some details,
e.g., deleting one redundant attribute will result in at least
a 50% decrease of cuboids we have to search. Deleting two
redundant attributes can reduce the cuboids by more than 75%,
etc. The more redundant attributes we delete, the fewer cuboids
need to be searched, thus resulting in the higher efficiency of
localizing the root anomaly patterns. The complete procedure
of redundant attribute deletion is given in Algorithm 1.

Proof 1: Denote the total number of attributes as n, and the
total number of cuboids that need to be traversed when search-
ing the root anomaly patterns is 2n − 1 without deleting any
attributes. Assuming that k redundant attributes are deleted,
the total number of cuboids to be traversed in the remaining
search are 2n−k − 1, so the ratio of cuboids decreased to be
traversed is:

DecreaseRatio@k =
(2n − 1)− (2n−k − 1)

2n − 1
=

2n − 2n−k

2n − 1

=
2k − 1

2k − 1
2n−k

>
2k − 1

2k

(2)

TABLE IV
THE RATIO OF CUBOIDS DECREASED AFTER DELETING REDUNDANT

ATTRIBUTES

k 1 2 3 4 5
DecreaseRatio@k 0.5 0.75 0.875 0.9375 0.96875

Algorithm 1 Redundant Attributes Deletion
Input: The most fine-grained attribute combinations dataset

D, each item of which has been detected as normal
or abnormal by predicted value and real value, e.g.,
[[a1, b1, c1, d1, anomalous], [a2, b2, c2, d2, normal], ...]
The attributes set AttributeSet, e.g., {A,B, C,D}
The threshold tCP

Output: The left attributes set AttributeSet′, any of which
is related with RAPs, e.g., {A,B}

1: for attr ∈ AttributeSet do
2: Calculate CPattr (Eq.1) on D
3: if CPattr < tCP then
4: delete attr from AttributeSet
5: end if
6: end for
7: AttributeSet′ ← Sort AttributeSet by CPattr reversely
8: return AttributeSet′

TABLE V
MAPPING BETWEEN VERTICES AND ATTRIBUTE COMBINATIONS

1-1 (a1, ∗, ∗, ∗) 2-6 (a2, b2, ∗, ∗) 3-2 (a1, b1, c2, ∗)
1-2 (a2, ∗, ∗, ∗) 2-7 (a2, ∗, c1, ∗) 3-3 (a1, b2, c1, ∗)
1-3 (a3, ∗, ∗, ∗) 2-8 (a2, ∗, c2, ∗) 3-4 (a1, b2, c2, ∗)
1-4 (∗, b1, ∗, ∗) 2-9 (a3, b1, ∗, ∗) 3-5 (a2, b1, c1, ∗)
1-5 (∗, b2, ∗, ∗) 2-10 (a3, b2, ∗, ∗) 3-6 (a2, b1, c2, ∗)
1-6 (∗, ∗, c1, ∗) 2-11 (a3, ∗, c1, ∗) 3-7 (a2, b2, c1, ∗)
1-7 (∗, ∗, c2, ∗) 2-12 (a3, ∗, c2, ∗) 3-8 (a2, b2, c2, ∗)
2-1 (a1, b1, ∗, ∗) 2-13 (∗, b1, c1, ∗) 3-9 (a3, b1, c1, ∗)
2-2 (a1, b2, ∗, ∗) 2-14 (∗, b1, c2, ∗) 3-10 (a3, b1, c2, ∗)
2-3 (a1, ∗, c1, ∗) 2-15 (∗, b2, c1, ∗) 3-11 (a3, b2, c1, ∗)
2-4 (a1, ∗, c2, ∗) 2-16 (∗, b2, c2, ∗) 3-12 (a3, b2, c2, ∗)
2-5 (a2, b1, ∗, ∗) 3-1 (a1, b1, c1, ∗) - -

D. Anomaly Confidence Guided Layer-by-Layer Top-down
Search

After deleting the redundant attributes unrelated to the
anomaly, we need to traverse all the cuboids composed of the
remaining attributes to find the root anomaly patterns because
they are all related to the root anomaly patterns. Based on
Insight 2, once an attribute combination is a root anomaly
pattern, its descendants can no longer be root anomaly pat-
terns. Therefore, we design a layer-by-layer top-down search
algorithm guided by the “Anomaly Confidence” metric, to
localize the root anomaly patterns for failures as accurately
and quickly as possible. The basic idea of the search algorithm
is: we first use the “anomaly confidence” metric to determine
whether an attribute combination is anomalous or not; Then,
once an anomalous attribute combination is further considered
as a candidate root anomaly pattern, all of its descendants can
be pruned off.

Before going into the details, we first present Criteria 2 and
Criteria 3.
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Fig. 7. Attribute Combinations Structure

Criteria 2: ∀ac, if Confidence(ac ⇒ Anomaly) >
tconf , then ac is anomalous. Where Confidence(ac ⇒
Anomaly) = support countD(ac,Anomaly)

support countD(ac) , tconf is confidence
threshold with a large value.

Criteria 3: If ac is a RAP , ∀ac′ ∈ Descendants(ac) is
certainly not a RAP , where ac denotes the current searching
attribute combination and D is the most fine-grained dataset.

In Criteria 2, tconf is a confidence threshold with a
large value. Confidence(ac ⇒ Anomaly) also means the
anomaly ratio of the current visiting attribute combination,
which is expressed by the percentage of anomalies in the
most fine-grained descendant attribute combinations of the
current ac. support countD(ac) is the number of the descen-
dant attribute combinations of the current visiting ac in the
most fine-grained attribute combination dataset D, whereas
support countD(ac,Anomaly) is the number of attribute
combinations which are the descendants of ac and meanwhile
anomalous in D. We can easily come to that the higher
the confidence, the more likely the current ac is anomalous.
Therefore, we should choose a relatively large tconf instead
of a very large tconf , due to the fact that a relatively large
tconf will achieve a good error-tolerant rate.

Subsequently, we present the detailed explanation below
combined with the directed acyclic graph (DAG) in Fig. 7.
In the DAG, each vertex represents an attribute combination,
and each edge indicates the parent-child relationship between
two vertices. Note that the start vertex of the edge is the
parent of the end vertex. Fig. 7 top shows the parent-child
relationship of all attribute combinations before search. We
assume that the root anomaly patterns are (a1, ∗, ∗, ∗) and
(a2, b2, ∗, ∗). Next, we traverse each vertex layer-by-layer from

top to bottom based on BFS. As shown in Fig. 7 middle,
when we search the first vertex (a1, ∗, ∗, ∗) (node “1-1”), we
can conclude that it is an anomalous attribute combination
according to Criteria 2, and then according to the definition
of RAP, it can be determined as a RAP. Meanwhile, all of
its descendants are certainly not RAPs according to Criteria
3, which can be pruned off to avoid unnecessary search,
thus improving efficiency. As shown in Fig. 7 bottom, after
traversing the remaining vertices of the first layer based on
BFS and finding no anomalous vertices according to Criteria
2, we start traversing the vertices of the second layer in the
DAG. When traversing the vertex “2-6”, we can conclude that
it is a RAP according to Definition 1 and Criteria 2, so we
delete all of its descendant vertices according to Criteria 3.

Next, we use an early stop strategy to terminate the search
procedure of the DAG in advance, i.e., whenever we find
a RAP, judge whether the current RAP candidate set has
covered the most fine-grained anomalous attribute combination
in the dataset D. Finally, we sort the obtained candidate set
in descending order according to their RAPScore, (Eq. 3) and
return top-k RAPs. We define the RAPScore by considering
the layer that ac resides in, because the possibility that the
current ac is a root cause is negatively correlated with it.

RAPScore =
Confidence(ac⇒ Anomaly)√

Layer
(3)

The detailed procedure of layer-by-layer top-down search is
shown in Algorithm 2. Besides, it also should be noted that, in
Fig. 7, red vertices denote the abnormal attribute combinations,
blue vertices are normal attribute combinations that have been
searched, and white vertices denote attribute combinations that
have not been searched. The mapping between vertices and
attribute combinations is reported in Table V.

V. EXPERIMENTS

A. Dataset

We use two datasets, the public Squeeze semi-synthetic
dataset [22] and the semi-synthetic dataset RAPMD. RAPMD
is created by injecting failures into the background data which
is collected from an ISP-operated CDN in China. Specifically,
the background data consists of KPIs of the most fine-grained
attribute combination, e.g., “Out Flow” of (L1, Wireless, IOS,
Site1), which indicates the traffic volume output from the
edge servers at location “L1” for the “IOS” users who surf
the “Site1” via the “wireless” network. And these KPIs are
collected every 60 seconds spanning about 35 days (from
Feburary 1st to March 7th). There are about 1440 time points
every day, of which 3 time points are randomly selected for
failures injection, thus we obtain 105 failures in total.

For the Squeeze dataset, it makes two assumptions.
1) Vertical Assumption: The anomaly degree of descendant

attribute combinations under the same RAP is the same.



Algorithm 2 AC-Guided Layer-by-Layer Top-down Search
Input: The most fine-grained attribute combinations dataset

D, the same as Alg.1
The attributes set AttributeSet′ returned by Alg.1, e.g.,
{A,B}
The threshold tconf
The specified number of returned RAPs k

Output: The Root Anomaly Patterns Set, short for RAPSet,
e.g., [(a1, ∗, ∗, ∗), (a2, b2, ∗, ∗)]

1: for Layer ∈ 1, 2, ..., |AttributeSet′| do
2: Cuboids← get cuboids(AttributeSet′, Layer)
3: for cuboid ∈ Cuboids do
4: for ac ∈ cuboid do
5: Calculate Confidence(ac⇒ Anomaly) on D
6: if Confidence(ac⇒ Anomaly) > tconf then
7: CandidateSet← CandidateSet+ ac
8: Prune off the brunch of ac
9: if CandidateSet Covers Danomalous then

10: Early stop and jump out of all loops.
11: end if
12: end if
13: end for
14: end for
15: end for
16: for CandidateRAP ∈ CandidateSet do
17: Calculate RAPScore (Eq.3) of CandidateRAP
18: end for
19: CandidateSet′ ←Sort CandidateSet by RAPScore

reversely
20: RAPSet← CandidateSet′(k)
21: return RAPSet

2) Horizontal Assumption: The anomaly degree of different
failures is different. Note that there may be several RAPs with
regard to one failure.

However, through a careful analysis of the failure data of an
ISP-operated CDN, we observe that even for the descendant
attribute combinations under the same RAP, their anomaly
magnitude may not be the same. Due to the fact that the KPI
for the most fine-grained attribute combination in the real-
world CDN is usually sparse and fails to show the statistical
characteristic, resulting in the non-concentrated deviation be-
tween the predicted and actual values. On the contrary, we also
observe that two anomalies may show a similar degree, even
though they come from different failures in real-world CDN.
In addition, the Squeeze dataset can be classified into different
categories with regard to the dimension and the number of
RAPs at a certain time point. However, it is usually very hard
for us to know how many failures there are and which layer
of cuboids the failure in the real-world scenario.

To make up for the above three shortcomings of the squeeze
semi-synthetic dataset, we create RAPMD by referring to
the real-world root anomaly patterns in failures injection
procedure to avoid the ideal root anomaly patterns in RAPMD.
To this end, we randomly extract 105-timestep points from the

background data of a real-world ISP-operated CDN and inject
the failures with the following characteristics.

• Randomness 1: We randomly select the number of RAPs
that is in the range of [1, 3] at each time point. Any
dimension can be selected for each RAP, and the dimen-
sion between them is not necessary to be the same. For
example, for time point 001, we randomly select three
RAPs to inject faults, and these three RAPs are randomly
selected as (a1, ∗, ∗, ∗),(∗, b1, ∗, ∗) and (∗, ∗, c1, d1).

• Randomness 2: For each randomly selected root RAP’s
most fine-grained descendant attribute combination, we
randomly select its Dev at [0.1, 0.9] (Eq. 4, where ε is
an extremely small value used to avoid dividing by 0). For
each of the remaining normal most fine-grained attribute
combinations, we randomly select Dev at [−0.02, 0.09].
Finally, the predicted value (Eq. 5) for each of the most
fine-grained attribute combinations is given based on the
selected Dev. This ensures that the relative deviation of
the most fine-grained attribute combinations under the
same RAP may be different, and the relative deviation
of the most fine-grained attribute combination under
different RAPs may be the same.

Dev =
f − v

f + ε
(4)

f =
v +Dev · ε
1−Dev

(5)

B. Evaluation Metrics

Because the Squeeze semi-synthetic dataset is classified
according to the dimension and number of root anomaly
patterns, we know the number of RAPs in advance before
localizing. Therefore, we keep the number of returned results
of the algorithm the same as the actual number of RAPs,
and compare F1-score as Eq. 6 of baseline methods and
RAPMiner in the experiments.

F1-score = 2× Precision×Recall

Precision+Recall
(6)

Since the number of failures injected into RAPMD at each
time point is random, and we pay more attention to the recall,
we adopt RC@k [28]–[30] to evaluate the performance of
baseline methods and RAPMiner, Eq. 7, where k is the number
of recommended results of the algorithm and T is the anomaly
set. Predit denotes the ith recommended result of the anomaly
t, and Realt denotes the real RAP set of the anomaly t.

RC@k =

∑
t∈T

∑k
i=1 Predit ∈ Realt∑
t∈T |Realt|

(7)

To evaluate the efficiency of these algorithms, we directly
compare their average running time in identifying the RAPs.



C. Baseline Methods

1) Adtributor [13]: This method is only applicable to the
scenario where the RAPs are all one-dimensional. Adtributor
proposes three metrics which are Explanation Power (EP),
Succinctness and Surprise respectively to search each attribute
value under each attribute and determine whether the attribute
value is the culprit of failure or anomaly.

2) iDice [14]: iDice is able to conduct root anomaly pattern
mining in multi-dimensional attribute combination space. It
mainly uses Impact for data pruning, Change Detection and
Isolation Power for localizing failures, i.e. mining RAPs based
on BFS.

3) FP-growth [15]: Association rule is employed to search
for root anomaly patterns. We adopt an efficient implementa-
tion of the association rule, i.e., FP-growth [31], [32] to mine
the RAPs.

4) Squeeze [22]: A metric named GPS (General Potential
Score) is proposed to determine the root anomaly pattern and
tries to mine the root anomaly patterns by searching every
possible cuboid based on clustering. As mentioned above,
this method has two strict assumptions: (1) The anomaly
magnitude of all attribute combinations under the same root
anomaly pattern is the same; (2) The anomaly magnitude of
attribute combinations varies among different failures.

D. Hardware platform

Our experiments, including performance and running time
comparison, are conducted on a server with Intel(R) Xeon(R)
CPU E5-2620 v2 @ 2.10GHz.

E. Effectiveness Comparison

1) The Effectiveness on Squeeze Dataset: The Squeeze
dataset has several groups of data according to different
noise levels. We only select data of B0-level to evaluate the
effectiveness of the methods because the varying noise levels
only affect the anomaly detection of each most fine-grained
attribute combination. However, RAPMiner does not focus
on predicting and detecting KPI for each most fine-grained
attribute combination. The subsequent RAPScore no longer
uses the predicted and actual value of KPI but directly uses the
anomaly detection results of each most fine-grained attribute
combination for anomaly localization. The more accurate the
anomaly detection results are, the more effective the anomaly
localization is. Therefore, the data with different noise levels
is almost the same for RAPMiner. We need to ensure that the
anomaly detection results are as accurate as possible, which
also belongs to anomaly detection research. The effectiveness
of RAPMiner and baseline methods on squeeze-B0 are shown
in Fig. 8(a). RAPMiner, Squeeze, and FP-growth achieve
comparable performance on squeeze-B0. Among them, RAP-
Miner shows the best F1-score (i.e. (1, 1)-1.0, (1, 2)-0.995
and (1, 3)-0.985) on the groups in which the RAPs are one-
dimensional, and also achieves the best F1-score on the
groups of three-dimensional RAPs (3, 1) and (3, 2), which
is 1.0 and 0.967 respectively. Squeeze achieves the best
F1-score of 0.970 and 0.982, respectively, on the groups

of (2, 2) and (2, 3). The association rule mining based on
FP-growth achieves the best F1-score on (2, 1) and (3, 3)
groups, which are 1.0 and 0.963 respectively. Adtributor only
performs well on groups of one-dimensional RAPs, which is
consistent with the assumption that its root anomaly patterns
are located in one-dimensional cuboids. iDice achieves the
inferior performance in all groups.

2) The Effectiveness on RAPMD Dataset: RAPMD does
not group data by dimension or number of failures to avoid the
desirable root anomaly patterns. We calculate RC@3, RC@4,
and RC@5 of RAPMiner and Baseline Methods. Since the
Squeeze algorithm can not return a specified number of results
on RAPMD, we keep the same results for these three metrics
of Squeeze. As shown in Fig. 8(b), RAPMiner achieves the
best performance (above 80%) with regard to all of RC@3,
RC@4 and RC@5 on RAPMD, which is at least 10% higher
than the sub-optimal method, i.e., the association rule mining
implemented with FP-growth. It can also be seen that the
Squeeze method is less effective on RAPMD, due to the
fact that it only works on datasets that follow the desirable
assumptions. Adtributor only works on RAPMD datasets when
the RAPs are one-dimensional, and its RC@k can reach about
33%.

F. Efficiency Comparison

As shown in Fig. 9(a), Since Adtributor only searches one-
dimensional cuboids and its search space is very small, its
efficiency on groups (1, 1), (1, 2) and (1, 3) on the Squeeze-B0
dataset is the highest among all methods with the magnitude
of running time in anomaly localization around 10−2, but
its effectiveness on groups (1, 2) and (1, 3) is too low. In
contrast, the efficiency of the proposed RAPMiner can reach
sub-optimal on the premise of ensuring the effectiveness of the
algorithm on groups (1, 1), (1, 2) and (1, 3), and the magnitude
of the running time to localize anomalies is 10−1. In addition,
it can also achieve optimal effectiveness and guarantee the
efficiency simultaneously on groups (2, 1), (2, 2) and (2, 3),
with the order of magnitude for time consumption ranging
from 10−1 to 100. Squeeze can achieve the best efficiency
in groups (3, 1), (3, 2) and (3, 3). iDice shows the worst
efficiency among these algorithms and it takes more than 40s
on average to complete the anomaly localization.It should be
noted that the efficiency of RAPMiner is not related to the total
number of attributes, but the number of attributes contained
in the RAPs, because the redundant attributes can be deleted
by Algorithm 1, and time consumption will increase with the
increasing layer in top-down BFS search.

Fig. 9(b) shows, RAPMiner does not achieve the best
efficiency on RAPMD, because this dataset simulates the
actual anomaly localization scenario where there are many
3-dimensional RAPs in the failures, and the efficiency of
RAPMiner in searching high-dimensional RAPs e.g., 3-
dimensional, is inferior to 1-dimensional or 2-dimensional, so
its efficiency on RAPMD is slightly lower than that of Squeeze
and FP-growth. Despite this, it is still in an acceptable range,
which is equivalent to sacrificing some time for the effective-
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Fig. 9. Efficiency comparison on Dataset of Squeeze-B0 and RAPMD
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Fig. 10. Sensitivity evaluation for parameters tCP and tconf

TABLE VI
RESULTS OF THE EFFICIENCY IMPROVEMENT STUDY

Method RC@3(%) Time(s) Efficiency Improvement Effectiveness Decreased
RAPMiner with Redundant Attribute Deletion 81.4 0.618

42.07% 4.87%RAPMiner without Redundant Attribute Deletion 86.3 1.067

ness of the algorithm. Although both Adtributor and Squeeze
achieve higher efficiency, they show inferior effectiveness. And
iDice shows low effectiveness and efficiency. The FP-growth-
based association rule mining method is a sub-optimal method
with high efficiency, but its effectiveness is about 10% lower
than that of RAPMiner.

G. Parameter Sensitivity

We study the sensitivity of the threshold tCP we employ in
CP-based redundant attribute deletion to help prune redundant
attributes and the confidence threshold tconf we adopt in AC-
guided layer-by-layer top-down search to judge whether the
attribute combination is anomalous or not.

First, we set different values to parameter tCP to evaluate its
sensitivity. Since the classification power represents the ability
to reduce the entropy on the dataset of the attribute, and our
goal is to delete the attributes which are inferior in reducing
the entropy, i.e., the redundant attributes or attributes unrelated
to the root anomaly patterns. Hence, the threshold tCP should
not be too large. We usually set it to less than 0.1 (10%). Fig.
10(a) shows that with the increase of the threshold tCP , the
RC@3 slightly decreases, which means the performance of
RAPMiner is not very sensitive to the threshold tCP .

In addition, we also evaluate the sensitivity of the thresh-
old tconf by setting the different values. Since the attribute
combination with higher anomaly confidence is more likely to



be anomalous, this threshold should not be too small. Thus
several values greater than 0.5 (50%) are selected to illustrate
the sensitivity. As shown in Fig. 10(b), with the increase of
tconf , the RC@3 also increases slightly, which states that the
performance of RAPMiner is relatively stable w.r.t. tconf .

The parameter sensitivity analysis demonstrates there is a
large room for us to choose the threshold tCP and tconf .

H. The Efficiency Improvement of Redundant Attributes Dele-
tion

To illustrate the efficiency improvement of the proposed
CP-based redundant attribute deletion, we conduct two exper-
iments on RAPMD. One is the RAPMiner with Redundant
Attribute Deletion and the other is the RAPMiner without
Redundant Attribute Deletion. As reported in Table VI, the
redundant attribute deletion can improve the average efficiency
of RAPMiner by 42.07%, while the effectiveness is only
decreased by about 4.87%. The results verify the usefulness
of the proposed CP-based redundant attribute deletion.

VI. RELATED WORK

The research of anomaly localization mainly includes root
cause mining based on multi-dimensional KPIs and root cause
inference based on the dependency graph.

Root cause mining based on multi-dimensional KPI.
Many existing studies have focused on root cause mining using
multi-dimensional KPIs [13]–[15], [21], [22], [33]. Among
them, Adtributor [13] mainly focuses on anomaly localization
in the advertising system and assumes that the root anomaly
patterns are only located in a one-dimensional cuboid, consid-
ering the characteristics of the advertising system. In this way,
Adtributor only needs to traverse each attribute value of each
attribute, and the size of the search space equals the number
of attribute elements. Adtributor proposes three metrics to
determine whether an attribute combination is the root cause or
not: explanation power, succinctness, and surprise. In addition,
Adtributor designs different localizing mechanisms for funda-
mental and derived KPIs. iDice [14] can conduct root cause
mining in multi-dimensional attribute combinations. It narrows
the search space by pruning off attribute combinations through
the metric named “Impact”, performs anomaly detection of
attribute combinations via Change Detection, and conducts
root cause mining using Isolation Power. However, iDice has
inherent constraints and can not perform well in the case of
many root anomaly patterns. HotSpot [21] can also conduct
root cause mining in multi-dimensional attribute combinations.
It designs a root cause metric named potential score and adopts
the MCTS (Monte Carlo Tree Search) to mine the root causes
of anomalies. However, it is only suitable for fundamental
KPIs. Besides, HotSpot assumes that the root anomaly patterns
are only located in one cuboid at a time, and descendant
attribute combinations under the same root cause have the
same anomaly magnitude. Squeeze [22] is a supplement and
improvement to HotSpot. It proposes a potential generic score
based on HotSpot’s potential score, which can be applied to
both fundamental and derived KPIs and allow multiple failures

simultaneously. But the root anomaly patterns for each failure
locate only in the same cuboid. In addition, Squeeze also
assumed that attribute combinations under the same failure
have the same anomaly magnitude, and different attribute
combinations under various failures have different anomaly
magnitude. However, the anomaly magnitude of attribute com-
binations may be the same under different failures and vice
versa. [15] mentioned that association rule mining is used to
search for the root cause. There are many ways to realize
association rule mining, such as Apriori and FP-growth. The
efficiency of different implementation methods varies greatly
and the performance of some methods may be sensitive to
hyper-parameters. FluxRank [33] may be clustering and rank-
ing thousands or even millions of KPIs of different attribute
combinations to infer the system’s failures from the selected
digests directly.

Although these multi-dimensional KPI-based anomaly lo-
calization methods perform well in specific scenarios, e.g.,
the advertising system, software application, etc., they are not
effective in real-world CDN due to their desirable assumptions.
Compared with the existing methods, ARPMiner is more
practical in localizing root anomaly patterns effectively and
efficiently without strict assumptions.

Root cause inference based on dependency graph. In
this line of research, the fault localization research mainly
focuses on constructing the dependency graph between system
modules and the inference of the root cause of the fault based
on the constructed dependency graph. Current relevant studies
include but are not limited to [28]–[30], [34], [35], etc. Our
work can be used as a supplement to the root cause inference
based on the dependency graph because it can find the exact
scope of failures and thus assist root cause analysis.

VII. CONCLUSION

In this paper, a novel root anomaly pattern Miner (RAP-
Miner) is proposed to tackle the anomaly localization chal-
lenges in real-world CDN scenario. RAPMiner considers the
practical distribution features of anomaly patterns to avoid
the desirable assumptions so that it is more practical. For
the first time, RAPMiner combines a classification power-
based redundant attribute deletion with anomaly confidence
guided layer by layer top-down search to prune the non-
root cause attribute combinations and avoid searching for
anomaly but non-root patterns respectively, thus effective in
narrowing the search space. The extensive experiments show
the effectiveness and efficiency of RAPMiner compared with
the state-of-the-art baselines, especially in the CDN scenario.

ACKNOWLEDGMENT

This work was supported in part by National Natural
Science Foundation of China under Grant 61771469, and the
Cooperation project between Chongqing Municipal undergrad-
uate universities and institutes affiliated to CAS (HZ2021015).
We thank our shepherd Prof. Shuai Hao, and the anonymous
reviewers of DSN’22 for their insightful comments, which
helped improve the paper.



REFERENCES

[1] L. Dai, T. Lin, C. Liu, B. Jiang, Y. Liu, Z. Xu, and Z.-L. Zhang,
“SDFVAE: Static and dynamic factorized vae for anomaly detection
of multivariate cdn kpis,” in WWW ’21: The Web Conference, 2021.

[2] Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, and D. Pei, “Robust anomaly
detection for multivariate time series through stochastic recurrent neural
network,” in ACM SIGKDD, 2019, pp. 2828–2837.

[3] M. Sun, Y. Su, S. Zhang, Y. Cao, Y. Liu, D. Pei, W. Wu, Y. Zhang,
X. Liu, and J. Tang, “Ctf: Anomaly detection in high-dimensional time
series with coarse-to-fine model transfer,” in IEEE INFOCOM 2021,
2021, pp. 1–10.

[4] W. Chen, H. Xu, Z. Li, D. Pei, J. Chen, H. Qiao, Y. Feng, and Z. Wang,
“Unsupervised anomaly detection for intricate kpis via adversarial
training of VAE,” in IEEE INFOCOM, 2019, pp. 1891–1899.

[5] H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu, Z. Li, Y. Liu, Y. Zhao,
D. Pei, Y. Feng, J. Chen, Z. Wang, and H. Qiao, “Unsupervised
anomaly detection via variational auto-encoder for seasonal kpis in web
applications,” in WWW ’18, 2018, pp. 187–196.

[6] Y. Su, Y. Zhao, M. Sun, S. Zhang, X. Wen, Y. Zhang, X. Liu, X. Liu,
J. Tang, W. Wu, and D. Pei, “Detecting outlier machine instances through
gaussian mixture variational autoencoder with one dimensional cnn,”
IEEE Transactions on Computers, pp. 1–1, 2021.

[7] D. Liu, Y. Zhao, H. Xu, Y. Sun, D. Pei, J. Luo, X. Jing, and
M. Feng, “Opprentice: Towards practical and automatic anomaly detec-
tion through machine learning,” in ACM IMC ’15, 2015, pp. 211–224.

[8] Y. Chen, R. Mahajan, B. Sridharan, and Z. Zhang, “A provider-side view
of web search response time,” in ACM SIGCOMM ’13, 2013.

[9] H. Yan, A. Flavel, Z. Ge, A. Gerber, D. Massey, C. Papadopoulos,
H. Shah, and J. Yates, “Argus: End-to-end service anomaly detection
and localization from an isp’s point of view,” in Proceedings of the
IEEE INFOCOM 2012, Orlando, FL, USA, March 25-30, 2012, A. G.
Greenberg and K. Sohraby, Eds. IEEE, 2012, pp. 2756–2760.

[10] P. Bahl, R. Chandra, A. G. Greenberg, S. Kandula, D. A. Maltz, and
M. Zhang, “Towards highly reliable enterprise network services via
inference of multi-level dependencies,” in ACM SIGCOMM ’07. ACM,
2007, pp. 13–24.

[11] M. Ma, S. Zhang, D. Pei, X. Huang, and H. Dai, “Robust and rapid
adaption for concept drift in software system anomaly detection,” in 29th
IEEE International Symposium on Software Reliability Engineering,
ISSRE 2018, Memphis, TN, USA, October 15-18, 2018. IEEE Computer
Society, 2018, pp. 13–24.

[12] S. Zhang, Y. Liu, D. Pei, Y. Chen, X. Qu, S. Tao, and Z. Zang, “Rapid
and robust impact assessment of software changes in large internet-based
services,” in Proceedings of the 11th ACM Conference on Emerging
Networking Experiments and Technologies, CoNEXT 2015, Heidelberg,
Germany, December 1-4, 2015, F. Huici and G. Bianchi, Eds. ACM,
2015, pp. 2:1–2:13.

[13] R. Bhagwan, R. Kumar, R. Ramjee, G. Varghese, S. Mohapatra,
H. Manoharan, and P. Shah, “Adtributor: Revenue debugging in ad-
vertising systems,” in Proceedings of the 11th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 2014, Seattle,
WA, USA, April 2-4, 2014. USENIX Association, 2014, pp. 43–55.

[14] Q. Lin, J. Lou, H. Zhang, and D. Zhang, “idice: problem identification
for emerging issues,” in Proceedings of the 38th International Confer-
ence on Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22,
2016, L. K. Dillon, W. Visser, and L. A. Williams, Eds. ACM, 2016,
pp. 214–224.

[15] F. Ahmed, J. Erman, Z. Ge, A. X. Liu, J. Wang, and H. Yan, “Detecting
and localizing end-to-end performance degradation for cellular data
services based on TCP loss ratio and round trip time,” IEEE/ACM Trans.
Netw., vol. 25, no. 6, pp. 3709–3722, 2017.

[16] C. Lou, P. Huang, and S. Smith, “Understanding, detecting and lo-
calizing partial failures in large system software,” in 17th USENIX
Symposium on Networked Systems Design and Implementation, NSDI
2020, Santa Clara, CA, USA, February 25-27, 2020, R. Bhagwan and
G. Porter, Eds. USENIX Association, 2020, pp. 559–574.

[17] S. Burnett, L. Chen, D. A. Creager, M. Efimov, I. Grigorik, B. Jones,
H. V. Madhyastha, P. Papageorge, B. Rogan, C. Stahl, and J. Tuttle, “Net-
work error logging: Client-side measurement of end-to-end web service
reliability,” in 17th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2020, Santa Clara, CA, USA, February 25-
27, 2020, R. Bhagwan and G. Porter, Eds. USENIX Association, 2020,
pp. 985–998.

[18] J. Dilley, B. M. Maggs, J. Parikh, H. Prokop, R. K. Sitaraman, and W. E.
Weihl, “Globally distributed content delivery,” IEEE Internet Comput.,
vol. 6, no. 5, pp. 50–58, 2002.

[19] J. Jiang, S. Sun, V. Sekar, and H. Zhang, “Pytheas: Enabling data-
driven quality of experience optimization using group-based exploration-
exploitation,” in 14th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2017, Boston, MA, USA, March 27-29, 2017,
A. Akella and J. Howell, Eds. USENIX Association, 2017, pp. 393–
406.

[20] J. Jiang, V. Sekar, H. Milner, D. Shepherd, I. Stoica, and H. Zhang,
“CFA: A practical prediction system for video qoe optimization,” in 13th
USENIX Symposium on Networked Systems Design and Implementation,
NSDI 2016, Santa Clara, CA, USA, March 16-18, 2016, K. J. Argyraki
and R. Isaacs, Eds. USENIX Association, 2016, pp. 137–150.

[21] Y. Sun, Y. Zhao, Y. Su, D. Liu, X. Nie, Y. Meng, S. Cheng, D. Pei,
S. Zhang, X. Qu, and X. Guo, “Hotspot: Anomaly localization for
additive kpis with multi-dimensional attributes,” IEEE Access, vol. 6,
pp. 10 909–10 923, 2018.

[22] Z. Li, D. Pei, C. Luo, Y. Zhao, Y. Sun, K. Sui, X. Wang, D. Liu, X. Jin,
and Q. Wang, “Generic and robust localization of multi-dimensional root
causes,” in 30th IEEE International Symposium on Software Reliability
Engineering, ISSRE 2019, Berlin, Germany, October 28-31, 2019,
K. Wolter, I. Schieferdecker, B. Gallina, M. Cukier, R. Natella, N. R.
Ivaki, and N. Laranjeiro, Eds. IEEE, 2019, pp. 47–57.

[23] P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, and
G. Shroff, “Lstm-based encoder-decoder for multi-sensor anomaly de-
tection,” in ICML 2016 Anomaly Detection Workshop, 2016.

[24] K. Hundman, V. Constantinou, C. Laporte, I. Colwell, and
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