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ABSTRACT

The safety of Deep Neural Networks (DNNs) processing om-
nidirectional images (ODIs) is an under-researched topic. In
this paper, we propose a novel sparse attack, named Single-
Perspective (SP) Attack, towards fooling these models by
perturbing only one perspective image (PI) rendered from
the target ODI. The attack is launched from the perspective
domain, and finally the perturbation is transferred to the orig-
inal ODI. To this end, we propose an effective PI position
searching algorithm based on Bayesian Optimization, and
then corrupt the PI centered on the desirable position with
unconstrained/constrained perturbations. Extensive experi-
ments on synthetic and real-world omnidirectional datasets
demonstrate that SP Attack can overcome the projection
deformation of ODIs, and mislead the neural networks by
limiting the perturbations in a single patch on the target ODI.

Index Terms— Omnidirectional images, adversarial at-
tack, bayesian optimization, sparse attack

1. INTRODUCTION

Present studies on adversarial attacks mainly focus on the
tasks of 2D images, and only a few concern the 3D data such
as point cloud [1] and 3D mesh [2]. However, another type
of images, omnidirectional images (ODIs), which play a vi-
tal role in the advanced driver assistance systems (ADAS) [3]
and autonomous navigation [4, 5], have been long neglected
in the research of adversarial attacks.With an increasing num-
ber of learning models [6, 7, 8, 9] towards ODIs emerging for
practical applications, it is urgent to evaluate the robustness
of these models against adversarial attacks.

For attacking DNN models, sparse adversarial attack is a
practically relevant topic of interest. Different from lp−norm-
based algorithms that modify all the pixels of the input image,
sparse attacks aim at misleading DNNs by disturbing only
a small portion of the image [10, 11]. There are two levels
of constraints for sparse attacks. The first is the pixel level
[12, 13], limiting the number of perturbed pixels, while the
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second is the patch level, constraining the disturbed elements
in several patches on the image [14, 15]. In order to generate
adversarial ODIs, an intuitive approach is to directly apply
the 2D sparse attacks on the panoramas. However, it will in-
troduce nonnegligible deformation when we project the raw
ODIs to panoramas, reducing the aggressiveness of the at-
tack. Therefore, a new attack suffering from less deformation
is expected for generating adversarial ODIs.

ODIs can be represented by a set of perspective images
(PIs), which suffer from less deformation due to their narrow
views. Inspired by that, we propose to implement the adver-
sarial attack to the DNN models for ODIs by perturbing a
single perspective view, and we name our attack as Single-
Perspective Attack (SP Attack).

We focus on the score-based black-box scenario, in which
the attackers can only access to the predicted scores of the
target model. As different PIs corresponding to different view
angles, they have divergent impacts on the prediction score
of the neural network. Therefore, the core of our work is to
select an desirable PI available for launching the attack.

In this paper, we propose a novel PI position searching
approach based on Bayesian Optimization (BO), which helps
us obtain a proper perspective plane center position in few
iterations. After that, we design two attacks to perturb the
PI rendered from the selected position. The first does not
limit the scale of the added perturbation, called Perturbation-
Unconstrained (PU)-SP attack, while the other limits the mag-
nitude of the perturbation in an Lp-ball, named Perturbation-
Constrained (PC)-SP attack. Then we remap the perturbed
PI onto the spherical surface and generate the corrupted ODI
with other regions unchanged. Consequently, the resulting
image is the expected adversarial ODI. Overall, the key con-
tributions of this paper are as the follows:

• A novel sparse attack is proposed towards DNNs pro-
cessing ODIs. In our attack pipeline, the attacker only
needs to perturb one PI rendered from the target ODI,
which is concise, efficient, and practical.

• We propose a PI position selection method based on
Bayesian Optimization, efficiently finding a desirable
PI position for launching an attack.



• Extensive experiments are performed on synthetic and
real-world ODIs, and the results show the effectiveness
of the proposed SP Attack.

Algorithm 1 BO-based PI Position Selection Algorithm
Input: An ODI xs with ground-truth label yc, a classifier fm, the

PI position searching space V , and maximum iterations T
Output: A PI position v∗ = (θ∗, φ∗) for conducting attack
1: Set i = 0, and randomly initilize v, l with n PI positions
2: for i < T do
3: Calculate the GP model l ∼ GP (m(v), k(v, v′))
4: Estimate µ(v) and δ(v)
5: Use GP-UCB to sample the next PI position vn+1

6: Calculate ln+1

7: if ln+1 > 0
8: v∗ = vn+1

9: break
10: else
11: Add vn+1, ln+1 into v, l
12: end for
13: if i = T
14: No available PI position found
15: else
16: return v∗

2. SINGLE-PERSPECTIVE ATTACK

As shown in Fig. 1, given an ODI xs labeled as yc and a
target model fm, our goal is to find a PI xp rendered from xs

that can reserve adversarial perturbations against perspective
projection, formulated by

maxL(F [xs, Re(P (x
p))], yc), (1)

where L(·) is the loss function, P (·) is the perturbed function
on xp, Re(·) is the function to remap the perturbed PI onto
the spherical surface, and F [·] denotes the operation to recon-
struct the adversarial ODI. Eq. (1) reveals the pipeline of SP
Attack: We firstly select a PI position to lanuch the attack,
then perturbations are added to the PI rendered at the selected
position, and finally the perturbed PI is remapped onto the
spherical surface to generate the adversarial ODI.

Fig. 1. SP Attack is launched on a PI from the ODI.

2.1. PI Position Selection based on BO

As the perturbation is limited in a single PI, the core of our
attack is to select an optimal PI position to launch the attack.

A challenge of our attack is that it is conducted in a black-
box scenario, which means the gradients of fm are unavail-
able, thus a gradient-free optimization algorithm is required
for searching desirable PI position. In our work, we propose
a PI position selecting approach based on BO, which is an ef-
fective and efficient searching algorithm that does not rely on
calculating gradents.

Assuming xp is rendered at spherical coordinates (θp, φp)
on ODI, thus xp = Pr(xs, θp, φp), where Pr(·) denotes the
perspective projection. Then Eq. (1) can be rewritten as

max
θp,φp∈[0,2π]

L(F [xs, Re(P (Pr(x
s, θp, φp)))], yc). (2)

For classification task, L(·) is formulated by

L(xin, yc) = max(max{fm(xin)i : i 6= yc}−fm(xin)yc ,−k),
(3)

where xin is the input image, and k is the confidence.
We starts from a set of randomly sampled PI posi-

tions and their losses, denoted as v = [v1, v2, ..., vn] and
l = [l1, l2, ..., ln]. Then we calculate a model to estimate the
distribution of the loss l∗ for an unknown PI position v∗, and
we use the Gaussian Process (GP) model [16] to fit it

l ∼ GP (m(v), k(v, v′)), (4)

where m(v) is the mean function, and k(v, v′) is the covari-
ance function.

Next, we utilize an acquisition function to sample another
PI position vn+1 whose attack loss is more likely larger than
the elements in l. Following [17], we use the GP-Upper Con-
fidence Bound (UCB) function in our work, and we have

vn+1 = argmax(µ(v) +

√
2 log(N · π2 · (n+ 1)2)

6δ0
δ(v)),

(5)
where µ(v) and δ(v) are the mean and standard deviation of
v, N is the size of searching space, and δ0 is a sampling pa-
rameter. We add vn+1, ln+1 into v and l, then re-compute the
GP model and sample the next PI position until successfully
attack fm. The searching algorithm is summarized in Alg. 1.

2.2. Perturbation Generation

2.2.1. Perturbation-Unconstrained (PU)-SP Attack

The PU Attack does not require the perturbed image to be
visually similar to the original image, which is also a general
practice in previous work towards sparse attack.

For a PI xp, we firstly replace it with a Gaussian noisy
image which has the same size with xp. Considering the high
dimension of the image, we utilize random search to opti-
mize the noisy image to attack the target model. Assuming
the searching space of all pixels is V p, in every iteration, we
randomly select a combination of the pixels from V p, and if
the new perturbed image leads to a larger L, we update xp

with it, otherwise, we keep xp unchanged.



Perturbations Dataset Attack S-CNN E-CNN Sph-CNN

Unconstrained

Spherical ModelNet-40

SP Attack (0◦) 0.84 0.86 0.87
SP Attack (60◦) 0.78 0.81 0.82

LOAP (60◦) 0.8 0.83 0.85
LOAP 0.72 0.75 0.79

PU-SP Attack 0.32 0.37 0.49

Indoor Scene Panorama

SP Attack (0◦) 0.84 0.86 0.86
SP Attack (60◦) 0.79 0.82 0.83

LOAP (60◦) 0.85 0.86 0.86
LOAP 0.75 0.77 0.80

PU-SP Attack 0.38 0.47 0.55

Constrained

Spherical ModelNet-40

SP Attack (0◦) 0.88/0.86/0.78/0.76 0.9/0.89/0.79/0.77 0.87/0.86/0.86/0.81
SP Attack (60◦) 0.88/0.82/0.7/0.68 0.9/0.86/0.75/0.68 0.87/0.82/0.79/0.71

LOAP (60◦) 0.88/0.88/0.88/0.84 0.9/0.89/0.88/0.85 0.87/0.87/0.85/0.83
LOAP 0.88/0.84/0.8/0.78 0.9/0.88/0.85/0.77 0.87/0.85/0.82/0.77

PC-SP Attack 0.88/0.58/0.46/0.42 0.9/0.79/0.61/0.49 0.87/0.85/0.73/0.59

Indoor Scene Panorama

SP Attack (0◦) 0.90/0.87/0.81/0.77 0.91/0.89/0.88/0.79 0.91/0.90/0.88/0.82
SP Attack (60◦) 0.90/0.84/0.73/0.70 0.91/0.85/0.77/0.71 0.91/0.81/0.75/0.71

LOAP (60◦) 0.90/0.90/0.89/0.87 0.91/0.90/0.89/0.87 0.91/0.90/0.89/0.85
LOAP 0.90/0.85/0.82/0.78 0.91/0.89/0.87/0.79 0.91/0.90/0.89/0.81

PC-SP Attack 0.90/0.62/0.51/0.44 0.91/0.81/0.65/0.54 0.91/0.86/0.79/0.66

Table 1. Model accuracy against the PU-SP attacks and PC-SP attacks (with ε = 0/0.03/0.06/0.09)
.

(a) (b)

Fig. 2. The attacking performance of (a) PU-SP Attack and
(b) PC-SP Attack (ε = 0.09) with the increasing FoV size.

2.2.2. Perturbation-Constrained (PC)-SP Attack

Compared to PU Attack, PC Attack aims for generating ad-
versarial ODIs whose perturbations are imperceptible to hu-
man, thus the magnitude of the perturbation is limited by a
parameter ε. To this end, we introduce a submodel fs trained
with PIs, and iteratively update the PI with its gradient. For
the iteration t, the perturbed version of xp is calculated by

xpt = xpt−1 + α
∇xp

t−1
Lc(fm(xpt−1), yc)

||∇xp
t−1
Lc(fs(x

p
t−1), yc)||

, (6)

where∇ is the differential operator, Lc is the loss function of
fs, and α controls the magnitude per iteration, after several
iterations, the total perturbations are lower than ε finally.

2.3. Inverse Perspective Projection

For a given PI position P in spherical coordinates (θ, φ) on
the sphere. If the Field of View (FoV) fh × fw and desired
perspective resolution h × w are set, the mapping relation
between the 2D coordinate (u, v) on the PI and the spherical
coordinate can be obtained by the rectilinear projection.

Therefore, obtaining the perturbed PI xpa, we can re-
project it onto the original ODI. As for the areas in ODI
irrelevant to the selected PI, we keep them unchanged. Con-
sequently, the final adversarial ODI x̃sa is calculated by

x̃sa =Ms � xs + xsa, (7)

where � is the element-wise multiplication operation, xsa is
the region covered by the re-projection of xpa, and Ms is a
mask formulated as

Ms(i, j) =

{
0 if (i, j) is covered by xsa
1 if (i, j) is not covered by xsa

(8)

3. EXPERIMENTS

We evaluate the SP Attack on two datasets. The first is the
spherical ModelNet-40, used for shape classification, gen-
erated by projecting the ModelNet-40 dataset [18] onto the
sphere. The second is an indoor scene dataset composed of
PanoContext [19] and Standford 2D3D [20]. As there are
no previous studies towards the attack on models for ODIs,
we modify SP Attack by performing it on fixed latitudes
(0◦ and 60◦), and take them as two baselines (Fixed SP At-
tack (0◦/60◦)) to evaluate the effectiveness of the PI position
searching strategy. In addition, for evaluating the necessity
of conducting attack on the perspective domain rather than
panorama, we consider an effective sparse attack LOAP [15]
designed for planar images, and construct two baselines by
directly performing it on the panorama (LOAP) or fixing its
patches on the latitude of 60◦ (Fixed LOAP (60◦)). In the
attack, we consider three target models, including Spherical
CNN (Sph-CNN) [6], EquiConv CNN (E-CNN) [9], and a
Standard CNN (S-CNN) taking panoramas as inputs.



(a) Benign: Xbox. Adv.: Radio. (b) Benign: Plant. Adv.: Person. (c) Benign: Glassbox. Adv.: Car. (d) Benign: Car. Adv.: Bench.

(e) Benign: Bedroom. Adv.: Audi-
torium.

(f) Benign: Bedroom. Adv.: Office. (g) Benign: Livingroom. Adv.:
Bedroom.

(h) Benign: Livingroom. Adv.:
Conference room.

Fig. 3. Visualization of the adversarial ODIs generated by PU-SP attack (the left 4 pairs images) and PC-SP attack (the right 4
pairs of images, ε = 0.09). In each subfigure, the upper is the benign image, and the lower is the adversarial image.

3.1. Attacking Performance

Firstly, we evaluate the effectiveness of PU-SP Attack, and
the results are shown in Tab. 1. Our attack outperforms the
baselines with 30% ∼ 50% decline of accuracy. Specifi-
cally, the accuracies of the three victim models are around
0.3 ∼ 0.5 under the PU-SP Attack, while they are all above
0.7 under other attacks. Besides, the results of the PC-SP
Attack are also shown in Tab. 1. It can be seen that all the at-
tacks more or less affect the prediction of the victim models,
although the models perform well on benign images. Among
all attacks, the attack capability of the SP Attack is obviously
superior to that of the baselines. Compared to the two LOAP-
based attacks, the superiority of our attack indicates that at-
tacking from the perspective domain is more aggressive than
directly attacking from panorama, which is because that the
PIs suffer from less deformation than panoramas. In addition,
the accuracy under SP Attack is lower than that under SP At-
tack with fixed latitudes, showing that our proposed BO-based
searching algorithm selects efficiently the desirable PI posi-
tion on the whole ODI for attacking. Some examples gener-
ated by SP Attack are shown in Fig. 3. It can be observed that
the perturbations are limited in a small region, but eventually
mislead the prediction of the models. Besides, the patches
disturbed by PC-SP Attack are visually similar to their preim-
ages, which makes our attack more covert and practical.

3.2. Impact of FoV Size on Attacking Performance

We further measure the impact of the FoV on the performance
of SP Attack with the Spherical ModelNet-40 dataset. It can

be seen from Fig. 2 that the target models still perform well
against the SP Attacks generated from the narrow FoVs, such
as 20◦ and 40◦. However, when the size of FoV increases, the
accuracy of the models rapidly drops. When FoV size is equal
to 120◦, the accuracy on all the models of the attacks nearly
reaches 0. We also notice that the model accuracy against PU-
SP Attack declines faster than PC-SP Attack, which indicates
that the PU-SP Attack is more powerful than the PC-SP At-
tack, because it is not expected to reserve the visual quality of
the perturbed area on the ODI.

4. CONCLUSION

We investigate the vulnerability of DNNs processing ODIs
against the adversarial attack with a novel sparse attack that
only perturbs a single PI rendered from the target ODI. In or-
der to select a proper PI to launch the attack, we propose a PI
position selecting approach based on Bayesian Optimization,
and also design two methods to perturb the selected PI. A
systematic experiment demonstrates the effectiveness of the
proposed attack.
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