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Abstract—Although deep neural networks have demonstrated
exceptional performance in substantial computer vision tasks,
they can be easily confused by carefully generated adversarial
examples. Via a novel technique we call activation visualization,
the particular characteristics of adversarial examples are an-
alyzed in this paper. Observing that the dominant features of
adversarial examples are distributed over a high-dimensional
space, we propose a defense framework named RegionSparse that
projects the images into a low-dimensional space to remove the
influence of the adversarial perturbations on the performance
of deep neural networks. In RegionSparse, after training a
robust global dictionary, the region where pixels are highly
related to classification is firstly located by an object localization
mechanism, then the sparse coding is performed on the located
object region, together with a perturbation suppression for the
remaining region. Extensive experiments on ImageNet dataset
for gray-box, black-box, and transferred attacks are performed
and the results show that RegionSparse can eliminate up to 90%
attacks delivered by strong attacks including Momentum Iterative
Fast Gradient Sign Method and Carlini-Wagner’s L2 attack.

Index Terms—Adversarial examples, image classification, deep
neural networks

I. INTRODUCTION

Recent studies have revealed that deep neural networks
(DNNs) are particularly vulnerable to well-tuned perturba-
tions, and these perturbed instances are called adversarial
examples. Worse still, these perturbations are normally imper-
ceptible to human [1], [2], leading to severe consequences in
many DNN-based applications, especially in security-critical
systems, be it face recognition [3], autonomous navigation [4],
or robotic [5] systems.

To deal with adversarial examples in DNNs, researchers
have proposed several defense approaches. Defense ap-
proaches against adversarial examples typically fall into two
categories: model-specific and input-specific. Model-specific
approaches generally modify the architecture or training
scheme of models to improve their robustness [6], [7]. One
of the most effective model-specific approaches is adversarial
training [8]. It feeds adversarial examples themselves into the
training set. The performance of these approaches is limited
because they make strong assumptions about the type of
attacks [9]. Moreover, they tend to complicate models, and

This work was supported in part by National Natural Science Foundation of
China under Grant 61771469 and Ningbo Natural Science Foundation under
Grant 2019A610109.
∗Corresponding author

have not shown satisfying generalization ability on different
models. In contrast, input-specific approaches aim to remove
adversarial perturbations from the input data while keeping
the network fixed. They require no knowledge about the target
networks, and it makes them easily deployable to any DNN
models. Existing input-specific approaches, including JPEG
compression [10], [11], feature squeezing [12], total variance
minimization [9], and ComDefend [13], have achieved accept-
able results in previous works. However, these approaches did
not explore the unique space where the adversarial perturba-
tions express as the meaningful adversarial features that are
critical to the misclassification of DNNs. Instead, they simply
considered these perturbations as an ordinary type of noises
(e.g. Gaussian noise, impulse noise), and attempted to utilize
universal image denoising techniques to defend adversarial
attacks, which seriously restricts their performances.

Inspired by the observation from activation visualization
that adversarial images usually have more features in high-
dimensional space than benign ones, we propose to use sparse
coding to remove adversarial perturbations by projecting them
to a low-dimensional space. This work offers a fresh perspec-
tive on understanding and countering adversarial examples,
and to the best of our knowledge, none of the previous
works have considered the high-dimensional features implicit
in adversarial examples.

Our contributions are summarized as follows:
• We deeply analyze the high-dimensional characteristics

of adversarial examples with activation visualization, and
theoretically prove the feasibility of sparse coding to
reduce the impact of adversarial perturbations.

• We propose a defense framework RegionSparse. This
framework can be decomposed into two stages: dictio-
nary learning and sparse coding. In dictionary learning
stage, a novel dictionary learning scheme is designed
to capture the most essential and representative natural
features from a collection of benign images augmented
by image smoothing and patch normalization. In sparse
coding stage, a flexible image decomposition method is
proposed to balance the compression levels over different
regions of the image by combining sparse coding with
object localization, which tremendously improves the
effectiveness of defense.

• Comprehensive experiments is performed on ImageNet
dataset, and the results show that RegionSparse outper-



Fig. 1. Activation visualization of three different layers in Inception-v3 model. Color temperature map is used, in which lighter color indicates higher
activation.

forms the state-of-the-art defense approaches. Further-
more, RegionSparse can be easily combined with adver-
sarial training, which dramatically improve its capability
for defending adversarial attacks.

II. BACKGROUND

This section reviews the typical adversarial attacks and the
popular input-specific defense approaches.

A. Adversarial Attacks

a) FGSM: FGSM [2] is the first successful one-step
attack method. For a given image x, the adversarial examples
are computed by

xadv = x+ ε · sign(∇xL(x, y)), (1)

where ε governs the perturbation magnitude, y is the true label,
and L(·) is the loss function used to train the network (e.g.,
cross-entropy loss).

b) BIM: BIM [14] generates adversarial examples by
iteratively applying the FGSM method at a small step size:

xadvm = xadvm−1 + ε · sign(∇xadv
m−1

L(xadvm−1, y)), (2)

where m = 1, ...,M indicates the m-th iteration, M is the
maximum iteration number, xadv0 = x, and xadv = xadvM .

c) MI-FGSM: MI-FGSM [15] is another iterative ver-
sion of FGSM attack. It improves FGSM by introducing a
momentum term into gradient calculation:

gm = µ · gm−1 +
∇xL(xadvm−1, y)∥∥∇xL(xadvm−1, y)

∥∥
1

, (3)

where µ controls the influence of the previous gradient. The
gradient is used to optimize the image

xadvm = xadvm−1 + ε · sign(gm). (4)

d) CW-L2: CW-L2 [16] formalizes the procedure of
generating adversarial examples as an optimization problem
selecting a good trade-off between the prediction accuracy and
an L2 penalty that determines the scale of perturbations.

B. Defenses

The classic image processing techniques used for removing
adversarial perturbations are summarized as follows.

a) Total Variance Minimization (TVM): TVM [9] ran-
domly selects a subset of pixels from an image x, and
reconstructs the “simplest” image x′ that is consistent with the
selected pixels by solving the following optimization problem:

min
x′
‖x′ − x‖2 + λJ(x′), (5)

where λ denotes the trade-off between image similarity and
total variance, and J(x′) is called Total Variation, defined by:

J(x′) =
∑
x′

|∇x′|. (6)

b) Feature Squeezing: Xu et al. [12] proposed to deal
with adversarial examples by “squeezing” out their features
via local smoothing. Local smoothing usually runs a sliding
window over each pixel in the image, and smooths it with its
neighbors within the window. By making nearby pixels more
similar, this method can effectively “squeezing” a amount of
adversarial features out of the adversarial image and promotes
the models to accurately classify the image.

c) JPEG Compression: JPEG compression is designed
to reduce the imperceptible details in images, and it typically
performs a simple quantization that can effectively remove
small adversarial variations in pixel values from an image.

d) ComDefend: ComDefend [13] utilized an encoder-
decoder architecture to compress the 24-bits image to 12-bits
image to make the classifiers easier to simulate the image
distribution. The model consists of a compression CNN and
a reconstruction CNN, the former is used to reduce the bit



Fig. 2. Two stages of RegionSparse. The top flowchart describes the dictionary learning scheme, and the bottom one presents the sparse coding process. a
and b denote the widths of the original image and the extracted patches, respectively.

depth of the input image from 24 bit to 12 bit, and the later
is used to reconstruct a purified image from the compressed
image. Noting that Gaussian noise is added to the compressed
12-bits image for better performance.

III. UNDERSTANDING ADVERSARIAL FEATURES WITH
ACTIVATION VISUALIZATION

Achievements of feature visualization techniques [17], [18]
motivate researchers to illustrate the differences between be-
nign and adversarial images by analyzing their feature maps.
For instance, [19] attempted to apply a two-sample test on
the feature maps to distinguish adversarial examples from
benign ones. Li et al. [20] trained a cascaded classifier with
the feature maps to recognize adversarial examples. However,
these methods require additional statistical analyses, increasing
the computational complexity and lacking a visually intuitive
insight into the adversarial features.

According to [21], each channel of convolutional filters can
be seen as an individual feature detector, for it is sensitive to
a specific feature. Therefore, from the perspective of DNNs,
we believe that the number of activated feature detectors
for an image directly reflects the features contained in the
image. Motivated by this understanding, we propose a novel
visualization technique that directly visualizes the number of
activated detectors rather than the statistics of feature maps.
Specifically, a max-pooling operation is applied on every
feature map, and the size of the pooling kernel is equal to that
of the corresponding feature map, which allows the activation
of a feature detector to be represented as a single value. The
activation value of a feature detector indicates the significance
of the corresponding feature in the input image. With the aid
of activation visualization, we gain a deeper and more intuitive
insight into how adversarial examples affect DNNs.

Fig. 1 shows an example of activation visualization of three
different layers in Inception-v3 model [22]. In the relative low
layers (e.g. Conv.2, Mixed.1), the activation of the adversarial
image does not clearly distinguish from that of the benign one.

Nevertheless, the visualization result of the adversarial image
in the relative deep layer (e.g. Pool.3) becomes apparently
lighter than that of the benign image. This observation shows
that the lower layers detect similar features from both benign
and adversarial examples, while the deeper layers detect far
more features from adversarial images than benign ones.

To further validate this observation, we quantify the total
activation of a layer as the weighted sum of the activation
value of the feature detectors in this layer. The total activation
of l-th layer is formulated by

Vl =
∑

(pil−γ)>0

pil · sign(pil − γ), (7)

where i denotes the i-th feature detector, p denotes the acti-
vation value of the detector, and γ is the activation threshold.
Detectors with an activation value below γ are not considered
activated.

We calculate the ratio of the total activation of adversarial
images to that of benign images at each layer. In the layers
whose indexes are lower than 30, the ratios are almost equal to
1.0, indicating that the similar features are lying in adversarial
and benign images. Nevertheless, in the deeper layers, the
ratios are increase rapidly, especially those close to the output
layer, the ratios are up to 1.15, which suggests that adversarial
images have much more features in these layers. [23] observed
that shallow layers in the networks can detect angles and
edges, while deep layers are sensitive to high-level features
like outlines and objects. Because high-level features indicate
more detailed and complex spatial structures, they can be
considered high-dimensional. Therefore, adversarial images
can be considered to have more high-dimensional features than
benign ones. It explains how the adversarial examples mislead
DNNs: they generate vast high-dimensional features to activate
superabundant detectors and ultimately confuse the networks.

Based on the analyses above, we propose to utilize sparse
coding to compress redundant high-dimensional features of



TABLE I
TABLE OF IMPORTANT NOTATIONS.

Notation Meaning Notation Meaning
x natural image x′ adversarial image
K sparsity Ψ sparse dictioanry
f DNN model D benign patch dataset
F compression process C compression function
xo object region xb background region
θ tradeoff between xo and xb h degree of filtering

adversarial images to correct the predictions for them.

IV. THE PROPOSED APPROACH: REGIONSPARSE

Fig. 2 shows the whole framework of RegionSparse. In the
dictionary learning stage, image smoothing is firstly applied on
a collection of benign images. After that, abundant patches are
extracted from the smoothed images, and then we normalize
the patches extracted from the same images. Further, we
construct a patch dataset, and learn a global dictionary with
it.

In the sparse coding stage, we utilize object localization
technique to locate the region to be sparsely coded in the
image. Then, sparse coding is performed in the located region
with the dictionary obtained from the dictionary learning stage.
Finally, we apply background perturbation suppression on the
remaining area of the image. The processed image is then fed
into DNN to be classified.

A. Rationale of Sparse Coding

For a natural image x, its corresponding adversarial example
x′ can be formulated by x′ = x + e, where e denotes the
adversarial perturbation. The sparse representation SK(·) is
defined as

SK(x) = HK(ΨTx), (8)

where the function HK(·) enforces K-sparsity by retaining
the K coefficients largest in magnitude and zeroing out the
rest.

Assuming that sparse coding is operated in the high SNR
regime, according to [24], the additive perturbations do not
shift the K-dimensional subspace of x, then we can get

HK(ΨT (x+ e)) = HK(ΨTx) + e′, (9)

where e′k =

{
ψTk e if k ∈ SK(x)

0 otherwise
. The output of sparse

coding is:

x′s = xs + ΨT e. (10)

The energy function of adversarial attack is defined as the
norm between the prediction of natural image and adversarial
image:

E(x′) = ‖f(x′)− f(x)‖22 + ([f(x′)]− [f(x)])2, (11)

where the right term is a constraint condition for avoiding en-
ergy confusion (e.g. the energy of setting f(x) = 0.6, f(x′) =
0.4 is smaller than that of setting f(x) = 0.6, f(x′) = 1.0).
The gradient for energy function is calculated by

∂E(x′)

∂x′
= 2(f(x′)− f(x)) · ∂f(x′)

∂x′
. (12)

It is worth noting that DNNs tend to behave linear in high
dimension [2], [25], so we assume that f(x′) = WTx′,
where W is a generalized parameter matrix of the DNN, and
the rank of W is greater than the number of labels N , so
∂f(x′)
∂x′ = WT 6= 0. Obviously, the minimum of the energy

function occurs when f(x) = f(x′), and we can get the
optimal solution:

f(xs + ΨT e) = f(xs), (13)

that is, ΨT e = 0, which means that the space spanned from the
dictionary Ψ is orthogonal to the space occupied by adversarial
perturbations. In general, sparse coding projects the adversarial
perturbations e to a subspace of the space spanned from the
overcomplete normalization dictionary. Noting that e has a
higher dimension than the dictionary space, so

∥∥ΨT e
∥∥ < ‖e‖,

resulting in a weak impact for the model accuracy of the
adversarial perturbations.

B. Robust Global Dictionary Learning

Our learning scheme is based on Online Dictionary Learn-
ing [26] that is widely applied for image denoising. For
denoising tasks, it is common to utilize the noised images to
learn dictionaries when the original images are not available.
However, this approach is not suitable for adversarial image
countering tasks, because it needs to learn individual dictio-
naries for every adversarial image, and leads to dictionaries
containing adversarial features, resulting in low classification
accuracy. We overcome this problem by learning a global
dictionary with the following innovations.

a) Constructing Benign Patch Dataset.: In our scheme,
we randomly select substantial patches from a benign image
dataset to learn a global dictionary. Thus, there is no need to
retrain dictionaries when processing adversarial images. For
m benign images [x1, ..., xm], we extract n patches from the
image xk processed by Image Smoothing. Then the n patches
are flattened and concatenated to a matrix

Pk = [x1k, ..., x
n
k ]T . (14)

After that, we apply Patch Normalization on Pk and concate-
nate them to the final benign patch dataset:

D = [P1, ...,Pm]T . (15)

b) Image Smoothing.: In order to acquire a highly rep-
resentative dictionary, we should eliminate individual features
from different benign images by filtering out high frequency
elements in images. All blurring methods are alternative. In



this work, we select Non-local median (NLM) [27] to smooth
benign images.

NLM smooths a pixel over the whole image area. For a
given patch I(i) with pixel i as the center, NLM finds several
similar patches in the image and smooths the pixel i by the
central pixels of these patches. The weight corresponding to
the central pixel i and j can be obtained by:

ω(i, j) = e−
‖I(i)−I(j)‖22

h , (16)

where h controls the amount of details preserved after filtering.
c) Patch Normalization.: A problem in patch extraction

is that the patches come from different regions of images,
resulting in the nonidentical patch distributions. To deal with
it, we utilize z-score normalization to normalize patches that
are extracted from the same images.

For the Pk consisting of n patches sized of b×b, we
can take it as a b×b-dimensional matrix, that is, Pk =
(P

(1)
k , ...,P

(b×b)
k ). Each dimension is normalized as

Nor(P
(i)
k ) =

P
(i)
k − E[P

(i)
k ]√

V ar[P
(i)
k ]

, (17)

where the expectation E[Pk] and variance V ar[Pk] are com-
puted over each dimension.

Fig. 3. Visual attention maps of different images. Attention of benign images
is concentrated on the object regions, while that of adversarial ones deviates
from the normal areas. RegionSparse can recover the attention misled by the
adversarial attacks.

C. RegionSparse Coding

We have so far learnt a robust dictionary containing basic
features of natural images. Before utilizing this dictionary
to process images, we should consider a balance among
the compression levels over different regions of the image,
because high compression level can reduce more adversarial
perturbations, but too much compression could reduce the
accuracy on benign images by introducing numerous artifacts.
The compression process can be formulated by

F (x) =
∑
i

wiC(xi), (18)

where xi is the i-th region of the image, wi controls the
compression level for the i-th region. We divide the image

into object region xo and background region xb, then the
compression process can be simplified to

F (x) = θC(xo) + (1− θ)C(xb), (19)

In this paper, we use object localization and background
perturbation suppression to decide a satisfying θ.

a) Object Localization.: We visualize the attention areas
that contribute most to the classification for input images in
Fig. 3, and notice that the pixels highly related to the prediction
are gathered near the object instead of the background areas.
This observation shows that denoising in the object regions
may be effective to reduce the impact of adversarial examples
to a large extent, which avoids applying sparse coding on the
whole images and introduces less artifacts.

To select the region to be sparsely coded, we apply object
localization mechanism on input images. Firstly, we adopt
Sobel operator [28] on an image to calculate the gradients Gx
of x axis and Gy of y axis. To preserve the region with high
horizontal gradient and low vertical gradient, we calculate the
image gradient G = Gx−Gy . Next, the image is binarized and
the morphological operation is applied on the binary image.
Finally, the remaining outline of the binary image is marked
as the boundary of the object region.

b) Sparse Coding.: Sparse coding can be approximately
seen as a linear decomposition of an image x by solving the
following convex problem:

l(x,Ψ) = min
α∈Rm×k

1

2
‖x−Ψα‖22 + β ‖α‖1 , (20)

where m is the dimension of the image, β is a regularization
parameter, Ψ is the trained dictionary with k atoms, in
which each column represents an atom, and α is the sparse
approximation of the original image.

Orthogonal Matching Pursuit (OMP) [29] is generally used
to solve the problem above. Given a signal ~y and a dictionary
Ψ, the decomposition of ~y described by Ψ is ~y = Ψ~s + ~ε,
where ~s represents the coefficients and ε is the error. Then
OMP minimizes the error by iteratively selecting the columns
in the dictionary to represent ~y.

c) Background Perturbation Suppression.: Although
sparse coding has removed plentiful perturbations, a mild
filtering is still required, in order to reduce the impact of per-
turbations distributed in the background region and avoid high-
frequency jump between the sparsely coded and unprocessed
regions. Considering the capability of bilateral filter to smooth
image gradients while preserving edge features, we utilize it
to suppress background perturbations in RegionSparse.

V. EXPERIMENTAL RESULTS

We performed several experiments to test the efficacy of
RegionSparse. Three scenarios were considered in the exper-
iments:
• Gray-box scenario: The adversary has access to the model

architecure and parameters but is unaware of the defense
strategy.



• Black-box scenario: The adversary has no knowledge
about the model.

• Transferred attack scenario: The adversary is expected to
achieve attack with adversarial examples generated from
another model.

We considered two types of attacks on these scenarios: L2

attack (CW-L2, MI-FGSM) and L∞ attack (FGSM, BIM).
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Fig. 4. Top-1 accuracy of Inception-v3 model tested on the sparsely coded
images. Longer bar implies higher accuracy.

A. Experimental Setup

Our experiments were performed on Inception-v3 model
with validation set in the ImageNet dataset. To remove the
influence of the inherent inaccuracy of the model, we re-
constructed the dataset with correctly classified images. We
simulated the attacks using CleverHans. FGSM and BIM
attacks were performed with L∞ ∈ [2, 22]. For CW-L2 attack,
we used κ = 0, λf = 0.1, and the perturbations were
multiplied by a constant τ ≥ 1 to alter their magnitude. The
average L2 distance of CW-L2 and MI-FGSM were adjusted
to d ∈ [0.01, 0.2]. Our code will be released on the website.

B. Visualizing the Attention of Network

Before analyzing the performance of RegionSparse, we
tested its effectiveness in protecting the network attention area
by characterizing images from the perspective of DNNs. Class
Activation Mapping (CAM) [30] was applied here to localize
the attention areas detected by DNNs.

Fig. 3(a)-(d) and Fig. 3(e)-(f) respectively show two groups
of attention visualization results. Attention of benign images
is concentrated on object areas (e.g. left: the dog, right: the
phone), and it is the prerequisite of correct classifications. In
contrast, adversarial images successfully mislead the attention
of DNNs: the attention areas include irrelevant background
regions, resulting in wrong predictions. Fig. 3(d) and (f) show
that the attention of adversarial images processed by Region-
Sparse is similar to that of benign images, and it suggests that
RegionSparse has ability to correct the classifications misled
by adversarial attacks.
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Fig. 5. Top-1 accuracy of Inception-v3 model tested on the transformed
images produced by four kinds of attacks in a gray-box setting. The orange
dotted line shows the accuracy on images without any defenses, and the attack
strength of zero corresponds to benign images.
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Fig. 6. Top-1 accuracy of Inception-v3 trained on the transformed benign
images and tested on the transformed adversarial images generated in a black-
box setting.

C. Experiments of Variant Sparse Methods

To test the functions of additional steps added to the original
sparse coding, we here compared the whole RegionSparse
(Region) with those methods lacking different added steps:
trained dictionary (noTR), image smoothing (noIS), patch
normalization (noPN), and background perturbation suppres-
sion (noBS). Fig. 4 reports the results of this experiments.
Apparently, RegionSparse outperforms the other methods. For
L∞ attacks with L∞ = 10, it can correct up to 70% adversarial
examples and surpass other methods with the improvement at
most 20%. For L2 attacks with d = 0.1, RegionSparse can
successfully recognize more than 80% adversarial images. We
also notice that smoothing steps, including image smoothing
and background perturbation suppression, exert an important
impact on defense capability with the improvement up to 10%.



TABLE II
RESULTS FOR ADVERSARIAL TRAINING EXPERIMENTS (L∞ = 2/14/22, L2 = 0.01/0.14/0.2).

Network Defensive method Clean FGSM (L∞) BIM (L∞) CW-L2 (L2) MI-FGSM (L2)

Inception-v3

Normal 100%/100%/100% 25%/22%/24% 15%/0%/0% 14%/13%/18% 24%/3%/1%
FGSM Adversarial 83%/83%/83% 70%/52%/51% 76%/52%/42% 79%/74%/66% 74%/61%/51%

RegionSparse 84%/84%/84% 75%/60%/55% 78%/70%/67% 83%/80%/76% 81%/75%/68%
RegionSparse +

FGSM Adversarial 91%/91%/91% 85%/73%/69% 85%/79%/76% 86%/85%/82% 85%/81%/79%

D. Gray Box: RegionSparse Coding at Test Time

Fig. 5 shows the top-1 accuracy of Inception-v3 model
tested on the transformed images as a function of the attack
strength. When there is no defense, the attacks successfully
mislead the model, even though the model performs well on
benign images. For L∞ attacks, RegionSparse successfully
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Fig. 7. Top-1 accuracy of retrained models tested on transformed images
produced by four attacks, and the attacks have access to the resulting models.

corrects 55-85% images, and for L2 attacks, it recovers
70-85% images. In addition, RegionSparse is robust as the
attack strength increases. The maximum accuracy decrease of
RegionSparse is lower than 30%, and that for CW-L2 attack is
even less than 10%. When confronting strong attacks, the per-
formance of RegionSparse is apparently superior to any other
methods, including the state-of-the-art method ComDefend.
Other methods, by contrast, all suffer severe performance loss
against strong attack. Another observation is that in the case
of weak attacks, RegionSparse does not exhibit more excellent
performance. A reasonable explanation is that the model is
trained with high quality images, while RegionSparse projects
images to a low-dimensional space by removing more features
than other methods, which introduces artifacts and results in
low quality images.

E. Black Box: RegionSparse Coding at Training and Test Time

In this experiment, we randomly selected a subset from
ImageNet dataset and retrained the models with transformed
images. We collected the results of the retrained models on
the adversarial images produced in gray-box setting. Fig. 6

shows that applying transformation methods at training time,
indeed, conspicuously improves the effectiveness of defenses.
RegionSparse benefits the most from this operation, and it
gains accuracy improvements of 10% against attacks compared
with gray-box setting experiments. Although its superiority
on small-perturbation images is not distinct, the over 90%
accuracy is ample for a majority of classification tasks. Over-
all, RegionSparse, with the most competitive precision and
robustness, is still preferable to any other method.
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Fig. 8. Top-1 accuracy of Inception-v3 model tested on the transformed
adversarial images generated from Inception-v4 and Inception-Resnet-v2
model with L∞ = 22 for FGSM and BIM, d = 0.1 for CW-L2 and MI-
FGSM.

F. Extended Gray-Box: RegionSparse Coding at Training and
Test Time

This experiment investigated the robustness of the retrained
models when attackers had access to them. Fig. 7 shows
the results of this experiment. In comparison with gray-box
setting, defenses under extended gray-box setting can achieve
improvements about 10% in classification accuracy. Among
all methods, RegionSparse maintains a remarkable competitive
edge with accuracy more than 60%.

G. Black Box: Transferred Attacks
We investigated the effectiveness of RegionSparse against

attacks transferred from other models. The results presented
in Fig. 8 show that each strategy is effective on the transferred
attacks. RegionSparse, who can accurately classify more than
80% adversarial images, achieves the most competitive per-
formance. An interesting observation is that TVM and JPEG
Compression are more accurate than RegionSparse against
CW-L2 attack, and an explanation for it is that the two
methods are more accurate in small-perturbation cases as they
remove less features, as shown in Fig. 5.

H. Combined with Adversarial Training
A superiority of RegionSparse is that it can be easily

combined with model-specific approaches such as adversarial



training, remarkably improving its robustness. The results pre-
sented in Table II indicate that combining adversarial training
and RegionSparse achieves satisfying accuracy. Generally, it
can correct at least 70% adversarial images in any attack
strength. This apparent improvement encourages defenders to
apply more aggressive approximation (e.g. Larger sparseness)
to handle adversarial examples.

I. Analysis of RegionSparse

The capability of RegionSparse comes from the favorable
tradeoff of the compression levels between the object region
and the background region. Sparse coding can aggressively
suppress perturbations in the object region, and in the mean-
while bilateral filter mildly reduces perturbations in back-
ground and introduces less artifacts. This allows RegionSparse
to achieve high accuracy by selectively handling perturbations
spread over different regions of the image. An excellent
property of RegionSparse is that it only needs a few images
to capture benign features, greatly reducing its complexity.
Moreover, RegionSparse is still effective in adaptive white-
box setting where the attacker even has access to the de-
fense deployed. It is difficult to attack RegionSparse by back
propagating the model due to two reasons: i) RegionSparse
is not differentiable because it divides the image into two
regions and applies different processes on them. ii) Sparse
coding compresses the image at patch granularity, increasing
the difficulty to calculate the gradient of the model.

VI. CONCLUSION

This paper demonstrated that adversarial features are mainly
lying in high-dimensional spaces by activation visualization.
Based on that, an adversarial feature compression framework
RegionSparse was proposed to counter adversarial attacks.
The experimental results show that RegionSparse can achieve
satisfying performance with accuracy up to 80-90%. Fur-
thermore, integrating RegionSparse with adversarial training
can enhance the robustness of models by immuning DNNs
from artifacts introduced by sparse coding. Besides accuracy,
flexibility is another advantage of RegionSparse, which allows
it to be deployed into models without any modification. Our
future work will focus on extending RegionSparse with model-
specific approaches to effectively stabilize DNNs.
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