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Abstract—To conduct service quality management of industry
devices or Internet infrastructures, various deep learning ap-
proaches have been used for extracting the normal patterns of
multivariate Key Performance Indicators (KPIs) for unsupervised
anomaly detection. However, in the scenario of Content Delivery
Networks (CDN), KPIs that belong to diverse websites usually
exhibit various structures at different timesteps and show the
non-stationary sequential relationship between them, which is
extremely difficult for the existing deep learning approaches to
characterize and identify anomalies. To address this issue, we
propose a switching Gaussian mixture variational recurrent neu-
ral network (SGmVRNN) suitable for multivariate CDN KPIs.
Specifically, SGmVRNN introduces the variational recurrent
structure and assigns its latent variables into a mixture Gaussian
distribution to model complex KPI time series and capture the
diversely structural and dynamical characteristics within them,
while in the next step it incorporates a switching mechanism to
characterize these diversities, thus learning richer representations
of KPIs. For efficient inference, we develop an upward-downward
autoencoding inference method which combines the bottom-up
likelihood and up-bottom prior information of the parameters
for accurate posterior approximation. Extensive experiments on
real-world data show that SGmVRNN significantly outperforms
the state-of-the-art approaches according to F1-score on CDN
KPIs from diverse websites.

Index Terms—Multivariate Anomaly Detection, CDN, Proba-
bilistic Mixture Model, Variational Recurrent Neural Network,
Switching Mechanism.

I. INTRODUCTION

Today’s commercial Content Delivery Networks (CDN) typ-
ically provide content delivery services for tens of thousands
of websites, making it extremely important to monitor and
ensure the services of these websites under the constraints
specified by the service level agreements (SLA). To this
end, CDN operators usually collect various Key Performance
Indicators (KPIs) for each website, e.g., traffic volume, delay,
and hit ratio, etc., and perform anomaly detection for these
multivariate KPIs to detect a service failure or degradation.

Due to its tremendous capability in learning expressive
representations of complex data, a recent trend is to utilize
deep learning to detect anomalies, called deep anomaly de-
tection, purely from data [1]–[5]. The basic idea of deep
anomaly detection is to model the normal patterns of time

∗Yanwei Liu is the corresponding author, ]equal contribution.

Fig. 1: 2-weeks real world typical multivariate CDN KPIs of
6-websites. Periods in light blue show the change points in
KPIs; Regions highlighted in red represent the ground-truth
anomaly segments.

series, considering that an anomaly or outlier often behaves
differently from the normal data. In line with this philosophy,
a large number of novel unsupervised methods [2], [3], [5],
[6], that use the recurrent neural networks (RNN) for time
series feature extraction, have been proposed for multivariate
time series anomaly detection.

Despite the good performance that existing deep anomaly
detection methods claim, after conducting an analysis of some
typical CDN KPIs collected from a popular ISP-operated
(Internet Service Provider) CDN in China, we explored the
nature of the KPI data for diverse CDN websites and observed
two crucial challenges that the current deep anomaly detection
models cannot deal with effectively.

Challenge 1: The non-stationary dependencies across dif-
ferent time periods for one individual website will degrade the
performance of the existing deep anomaly detection models.
As shown in Fig. 1 (a) and Fig. 1 (d), it is clear that
user request behavior on weekdays is different from those
on weekends. The former website exhibits a burst of user
requests on weekends relative to weekdays, while the latter
figure illustrates the opposite. Fig. 1 (b) shows another typical
case, i.e., some users are scheduled to a different set of edge



nodes by the scheduling center of the CDN; thus, the moments
in time that KPIs change occur during these time periods. In
addition, there are even more complex cases in CDNs, that we
will examine carefully in our qualitative analysis experiments
in Section VI. Hence, the corresponding KPIs usually exhibit
non-stationary temporal characteristics due to the normal be-
haviors of users’ or scheduling by CDN, etc., which should
not be classified as service failures or degradation. However,
these type of expected patterns are difficult to be captured by
current methods, which further results in inferior performance
of the current methods on anomaly detection for the CDN, as
we will illustrate in the quantitative and qualitative analyses
in Section VI.

Challenge 2: Websites that are diverse exhibit various char-
acteristics in CDN KPIs, but several of them possess similar
characteristics, and this leads to the inability of current deep
anomaly detection models to capture this dynamic complexity
well, especially in one model. Since commercial CDNs usually
provide services for hundreds or even thousands of websites
that exhibit varying characteristics due to the service type and
the request behaviors of users, variations among the spatial
and temporal features of the KPIs that belong to the different
websites are observed. For instance, the KPIs of the Video on
Demand (VoD) websites in Fig. 1 (a) are usually very different
from the Live streaming websites in Fig. 1 (e). To conduct
effective anomaly detection for multiple websites, existing
deep anomaly detection methods usually train an individual
model for each website, thus suffer from the problem of
training and maintaining a large number of individual models
for each website, which not only consumes huge computing
and storage resources, but also raises the costs in model
maintenance. In addition, we also observe that KPIs that
belong to different websites e.g., in Fig. 1 (c) and Fig. 1 (f)
show similar characteristics. In this case, training an individual
model for each website is totally wasteful.

Moving beyond the limitations of previous work in manag-
ing two challenges above, in this paper, we propose a switch-
ing Gaussian mixture variational recurrent neural network
(SGmVRNN), which is a powerful probabilistic dynamical
model that is able to learn different structural characteristics at
different timesteps and capture various temporal dependences
between them, and to characterize the complex structural and
dynamic characteristics within multivariate KPIs of diverse
CDN websites. More specifically, inspired by the probabilistic
mixture models [7]–[9], we build a variational recurrent neural
network (VRNN) with the assumption that the latent vari-
ables of each timestep are drawn from the Gaussian mixture
distribution whose parameters for each component consist
of two elements: one is the specific prior for the current
input, and another is a transformation of the latent state
from the last timestep. Based on this, a discrete indicator
variable ct,n is introduced to guide the prior selection of the
current timestep and how the information transitions between
adjacent timesteps, as illustrated in Fig. 3, which is defined as
the switching mechanism [10]–[14]. Combining the switching
mechanism and the mixture model, SGmVRNN can not only

benefit the characterization of current input and the transmis-
sion of diverse temporal variation for ample representation
capability, tackling the first challenge above, with a switching
mechanism, but is also able to deal with diverse websites
well, addressing the second challenge above, with the mixture
Gaussian distributed latent variables. Moreover, SGmVRNN
can also enable the clustering of current input based on both
the structural and temporal characteristics.

Furthermore, to learn the parameters of SGmVRNN, we
present an upward-downward autoencoding variational infer-
ence method, which combines the bottom-up likelihood and
up-bottom prior information of the parameters for accurate
posterior approximation, thus to get the rich latent represen-
tation for SGmVRNN.

The main contributions of our work are summarized as
follows:

• We propose a switching Gaussian mixture variational
RNN (SGmVRNN), which incorporates probabilistic
mixture and switching mechanism into a variational
RNN, thus to efficiently model the non-stationary tem-
poral dependency between adjacent timesteps of multi-
variate CDN KPIs for one individual website and also
the dynamic characteristics of those among different
websites.

• To achieve accurate approximation of the posterior of
latent variable, we propose an upward-downward autoen-
coding variational inference method for SGmVRNN.

• We conduct extensive experiments on both a real-
world dataset collected from a top CDN provider in
China and a public dataset. The quantitative compari-
son results show that SGmVRNN significantly outper-
forms the state-of-the-art approaches according to F1-
score, and the qualitative analysis shows that it can
efficiently characterize CDN KPIs from diverse web-
sites with a single model. For allowing result reproduc-
tion, we have released our source code via GitHub at
https://github.com/dlagul/SGmVRNN.

II. PRELIMINARIES

In this section, we present the problem and the overall
framework of anomaly detection. Then, we give a brief
overview of the variational RNN, which is the basis of our
work.

A. Problem Definition

Defining the n-th multivariate CDN KPIs as xn =
{x1,n,x2,n, ...,xT,n} , where n = 1, ...N and N is the
number of KPI time series. T is the duration of xn and the
observation at time t, xt,n ∈ RV , is a V dimensional vector
where V denotes the number of KPIs, thus xn ∈ RT×V .
Anomaly detection on multivariate CDN KPIs is defined as a
problem that determines whether an observation from a certain
website and at a certain time xt,n is anomalous or not. To solve
this problem efficiently in an unsupervised way, we need a
powerful method for learning the robust representations of the
input data.



Fig. 2: Framework of the proposed anomaly detection for
multivariate CDN KPIs based on SGmVRNN.

B. Overview of the Framework

The complete framework for unsupervised anomaly de-
tection for multivariate CDN KPIs based on SGmVRNN is
shown in Fig. 2. The framework contains three key modules.
The first module pre-processes the original multivariate CDN
KPIs data so that they can be used by the learning model
for training. Specifically, the normalization and sliding time
window approaches [5] are adopted in this work. In the
representation module, we propose a SGmVRNN to learn the
complex structural and dynamic characteristics within mul-
tivariate CDN KPIs. The detailed description of SGmVRNN
will be provided in Section III. Finally, anomalies are detected
in terms of the reconstruction probability that is inferred from
the representation model. The anomaly detection module will
be explained in detail in Section V.

C. Variational RNN (VRNN)

VRNN [15] contains a Variational Autoencoder (VAE) [16]
at every timestep and these VAEs are conditioned on the latent
states of the last timestep. The prior on latent random variable
of the VRNN is no longer a standard Gaussian distribution as
standard VAE assumed, but it follows the distribution

zt ∼ N
(
µ0,t, diag

(
σ2

0,t

))
,[

µ0,t,σ0,t

]
= ϕprior

τ (ht−1)
(1)

where µ0,t and σ0,t denote the mean and variance parameters
of the conditional prior distribution. The generating distribu-
tion of the VRNN is conditioned on both the latent variable
zt and the hidden state variable ht−1 as

xt | zt ∼ N
(
µx,t, diag

(
σ2
x,t

))
,[

µx,t,σx,t
]

= ϕdec
τ (ϕzτ (zt) ,ht−1)

(2)

where µx,t and σx,t denote the mean and variance parameters
of the generating distribution, which transits from zt and
ht−1. ϕprior

τ , ϕdec
τ and ϕz

τ denote the nonlinear functions
respectively, such as a neural network, which is used to extract
features. To infer zt, like standard VAE, a Gaussian distributed
variational distribution q(zt|xt) is used to approximate its true
posterior. In a similar fashion with the generative process of

VRNN, the variational distribution is a function of both xt
and ht−1 as

zt | xt ∼ N
(
µz,t, diag

(
σ2
z,t

))
,[

µz,t,σz,t
]

= ϕenc
τ (ϕxτ (xt) ,ht−1)

(3)

where µz,t and σz,t are the mean and variance parameters of
the variational distribution. In VRNN, the encoding of varia-
tional distribution and the decoding of generated distribution
are tied together via the hidden state ht−1, which enables the
temporal information transition through different timesteps.
VRNN can be trained in a similar way with VAE.

III. SWITCHING GAUSSIAN MIXTURE VARIATIONAL
RECURRENT NEURAL NETWORK

In this section, we present the switching Gaussian mixture
variational RNN (SGmVRNN), which consists of a novel
switching generative model and a powerful upward-downward
multiple inference model, for multivariate CDN KPIs.

A. Switching Generative Model of SGmVRNN

As introduced in the subsection II-A, to model the data
diversity at different timesteps of multivariate CDN KPIs and
solve the non-stationary temporal dependence between them,
we extend VRNN into SGmVRNN. Specifically, unlike the
standard VRNN, we introduce latent discrete variable ct,n and
assign the form of the prior of the latent random variable as

zt,n|ct,n ∼
K∏
k=1

N (zt,n|µk, diag (σk))
ct,n,k (4)

where {µ,σ} = {µk,σk}
K
k=1 denote the parameters of

multiple Gaussian distribution and K denotes to the number of
components. ct,n = (ct,n,1, . . . , ct,n,K)

T is an explicit latent
variable associating with each xt,n, a one-hot vector which
obeys categorical distribution ct,n∼Cat(π) with parameter
π ∈ RK×1

+ . In this way, we assign a different Gaussian
distributed prior conditioned on ct,n for latent variable zt,n
at different timesteps, which indicates the diverse distribution
characteristics of input. Moreover, marginalizing ct,n, we can
achieve

zt,n ∼
∑
ct,n

p(ct,n|πt,n)p(zt,n|ct,n) =

K∑
k=1

πt,n,kN (µk, diag(σk))

Clearly, it is mixture Gaussian distribution with higher repre-
sentation power than a Gaussian distribution, and thus is just
ideal for characterizing the complex structure and temporal
characteristics within multivariate CDN KPIs.

After assigning the form of the prior of the latent variable
into the mixture Gaussian distribution, in a similar way with
the VRNN, to make sure our generative framework can model
both the diversity structure characteristics of input at different
timesteps and various temporal dependence among them, we
assign the parameters of the mixture distributed latent variables
as

µt,n,k = ϕprior
k (h

(1)
t−1,n, ct,n), k = 1 · · ·K

σt,n,k = ϕprior
k (h

(1)
t−1,n, ct,n), k = 1 · · ·K

(5)
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Fig. 3: Graphical illustration of each operation of the SGmVRNN: (a) conditional prior of latent variables zt,n and ct,n; (b)
generation process of xt,n; (c) inference of the variational distribution of zt,n and ct,n; (d) updating the hidden units of the
RNN recurrently; (e) overall operations of the SGmVRNN. Note that circles denote stochastic variables while diamond-shaped
units are used for deterministic variables, and shaded nodes denote observed variables.

where h
(1)
t−1,n is the determinative latent state variable of

the RNN, as shown in Figs. 3 (a) and (d). As we can see,
the prior of latent variables can be divided into two parts:
one is information transition from the last timesteps, and
another is the structure-related prior indicated by ct,n, which is
associated with current input. ϕprior

k can be any highly flexible
function, such as neural networks, and K different functions
are used here to model different structures and temporal
characteristics at different timesteps. More specifically, we use
the fully connected network as ϕprior

k , which is expressed as

µt,n,k = f(W k
hµh

(1)
t−1,n+W cµ(k, :)),

σt,n,k = f(W k
hσh

(1)
t−1,n+W cσ(k. :))

(6)

where f(·) is a deterministic non-linear transition function,
{W k

hµ,W
k
hσ}Kk=1 ∈ Rd×d are the transition matrices that

capture various temporal dependences between components.
{W cµ,W cσ} ∈ RK×d are the connected matrices from
categorical variable ct,n to the latent variable, which assigns
a specific prior in terms of the structure of the current input,
and d is the dimension of latent variable zt,n. Based on this,
the diversity of both structural and dynamical characteristics
within KPIs are considered by our model. In addition, we
define the parameter of the prior of ct,n as π0

t,n

Similar with [15], we assign the generated distribution
p(x̃t,n|zt,n) to be the Gaussian distribution and conditioned
on both zt,n and h(1)

t−1,n, which can be expressed as

x̃t,n|zt,n ∼ N
(
µxt,n,σ

x
t,n

)
,

µxt,n = ϕdec
µ (zt,n,h

(1)
t−1,n),

σxt,n = ϕdec
σ (zt,n,h

(1)
t−1,n)

(7)

where µxt,n,σ
x
t,n denote mean and variance parameters of the

generating distribution, and ϕdec
µ and ϕdec

σ can also be any
nonlinear flexible functions and we also use neural network
as

µxt,n = f(W x
zµzt,n +W x

hµht−1,n),

σxt,n = f(W x
zσzt,n +W x

hµht−1,n)
(8)

where {W x
zµ,W

x
zσ} ∈ Rd×Ṽ and {W x

hµ,W
x
hµ} ∈ Rd×Ṽ

are learnable parameters of our generative model. Finally,

to better generate the structures of data, we further apply
a deconvolutional network as xt,n = DCNN(x̃t,n), whose
parameters are defined as D. For ease of understanding, the
graphical illustration of the whole generation process is listed
in Figs. 3 (a) and (b).

As introduced in [17] and [18], feature extraction is cru-
cial for modeling complex sequences and the good fitting
performance plays an important role in the reconstruction-
based unsupervised anomaly detection. In this work, the latent
variables have a mixture distribution prior, and the transition
between them is handled by a switching mechanism, which
improves their power in modeling complex sequences. We will
prove this by visualizing the reconstruction likelihood in the
experiment. Besides, the RNN in our model updates its hidden
states using recurrent equation

h
(1)
t,n = fθ

(
ϕx
τ (xt,n) , zt,n,h

(1)
t−1,n

)
(9)

where fθ(·) is a deterministic non-linear transition function,
and here we use long short-term memory (LSTM), a gated
activation function, with parameter θ. As we can see, the
hidden state of the RNN is the function of zt,n,xt,n, and
h

(1)
t−1,n, indicating the distribution of zt,n and xt,n in Eqs. (4)

and (7) can be defined as p(zt,n|x<t,n, z<t,n, ct,n) and
p(xt,n|x<t,n, z≤t,n).

Note that the generative model of SGmVRNN reduces to
VRNN if we remove the switching and mixture structure,
which models the diversity of the structure and temporal char-
acteristics within multivariate CDN KPIs, by setting K = 1.
In addition, SGmVRNN also reduces to GmVAE [19], [20]
if we ignore its recurrent structure that models the temporal
dependence within multivariate CDN KPIs.

B. Upward-downward Switching Inference Network
In a similar way with VRNN, we develop an inference

network to map the inputs directly to their latent variables.
Specifically, we use a Concrete distribution [21] to approxi-
mate the categorical distributed indicator variables ct,n, and
a Gaussian distribution based inference network for latent
representation zt,n. Besides, to achieve accurate inference,
we further develop an upward-downward switching inference
network, as shown in Fig. 3 (c).



1) Gumbel-softmax-based variational inference for ct,n:
The categorical variable ct,n controls the structural prior of
latent state variable zt,n and its change from t − 1 to t. To
learn ct,n, we apply variational inference [22], [23]. However,
it is difficult to directly optimize the discrete variable ct,n
since the back-propagation algorithm cannot be applied to
non-differentiable layers. Inspired by [22], [23], we introduce
a differentiable sample from Gumble-softmax distribution to
approximate the sample from the categorical distribution.
Specifically, we assign the variational distribution as q(ct,n) =
Gumble-softmax(π̄t,n), where π̄t,n ∈ RK×1 is the parameter
for q(ct,n) and it draws samples via

ct,n,k =
exp ((log π̄t,n,k + gt,n,k) /λ)∑K
k=1 exp ((log π̄t,n,k + gt,n,k) /λ)

for k = 1, . . . ,K,

gt,n,k ∼ Gumbel(0, 1) = − log (− log (εt,n,k))

(10)

where λ denotes the softmax temperature and εt,n,k refers to
the standard uniform variable. As λ approaches 0, samples
from the Gumbel-softmax distribution become one-hot and
the Gumbel-softmax distribution q(ct,n) becomes identical to
the categorical distributed prior of ct,n, which is denoted as
p(ct,n).

2) Gaussian-based variational inference for zt,n: As
the usual strategy of VAE, we use a Gaussian variational
distribution q(zt,n) to infer the posterior distribution of zt,n.
We assign q(zt,n) as

q(zt,n) = N (µ̄t,n, diag(σ̄t,n)) (11)

where µ̄t,n and λ̄t,n are the parameters determinately trans-
formed from the inference network, which will be introduced
below. Sampling from the latent variable can be achieved by

zt,n = µ̄t,n + σ̄t,nεt,n, εt,n ∼ Uniform(0, 1), (12)

which ensures the application of back-propagation algorithm.
3) Upward-downward information propagation: As a

deep VAE, we define the joint variational distribution
q(zt,n, ct,n|xt,n), that needs to be flexible enough to approxi-
mate the true posterior distribution p(zt,n, ct,n|xt,n) as closely
as possible, to be factorized with a bottom-up structure [24]–
[26] as

q(zt,n, ct,n|xt,n) = q(zt,n|xt,n)q(ct,n|zt,n,xt,n) (13)

To achieve the accurate optimization of the hierarchically
structured variational distribution, inspired by ladder VAE
of [27], [28], we construct an upward-downward inference
network by combing the bottom-up likelihood information and
up-bottom prior information from the generative distribution
as

q(zt,n, ct,n|xt,n) = q(ct,n|xt,n)q(zt,n|xt,n, ct,n) (14)

Specifically, for capturing the structural characteristic of input,
we first conduct a one-dimensional convolutional network as
x̄t,n = CNN(xt,n), where CNN denotes the convolutional
operation and we define its parameters as D̄, x̄t,n ∈ RV̄×1.

Then, as shown in Fig. 3 (c), for upward information transition,
we get the latent state variable h(1)

t,n of the recurrent network
with Eq. (9). Based on this, we further apply fully connected
network to get the latent state variable h(2)

t,n for ct,n as

h
(2)
t,n = f(W̄ hyh

(1)
t,n + b̄hy) (15)

where W̄ hy ∈ Rd1×d2 denotes the hidden-to-hidden weight
matrix, d2 refers to the dimension of h(2)

t,n. With the assumption
that the real-word changes in dynamics at timestep t are causal
[13], [29], which is also appropriate for multivariate CDN
KPIs, we assign ct,n to non-linearly depends on the history
input. Specifically, in inference network for πt,n, to make sure
the information transition from both the current and history
inputs, we parameterize two deterministic upward paths to
obtain the indicator variable as

π̄t,n = softmax(W̄ xcx̄t,n + W̄ hch
(2)
t−1,n + b̄hc) (16)

where W̄ xc ∈ RV̄×K , W̄ hc ∈ Rd2×K and b̄hc ∈ RK
denote the learnable parameters of inference model from x̄t,n
and h(2)

t−1,n to π̄t,n. After getting π̄t,n, we can sample ct,n
via Eq. (10). W̄ xcxh,t in Eq. (16) ensures that ct,n directly
reflects the structural characteristics of current input, while
W̄ hch

(2)
t−1,n reflects the temporal relations of latent states.

SGmVRNN fuses the obtained indicator variable ct,n with the
prior to guide the inference of zt,n and construct the switching
inference network as

q(zt,n|xt,n,h(1)
t−1,n, ct,n) = N (µ̄t,n, diag(σ̄t,n))

µ̄t,n = f(

K∏
k=1

(W̄
k

hµ
h

(1)
t−1,n + W̄

k

xµ
x̄t,n + b̄

k

hµ
)
ct,n,k

)

σ̄t,n = softplus(
K∏
k=1

(W̄
k

hλ
h

(1)
t−1,n + W̄

k

xλ
x̄t,n + b̄

k

hλ
)
ct,n,k

)

softplus denotes the operation log(1 + exp(·)) to ensure the
nonlinearly and positively transition from the latent states to σ.
{W̄ k

hµ, W̄
k
hλ}Kk=1 ∈ Rd1×d and {W̄ k

xµ, W̄
k
xλ}Kk=1 ∈ RV̄×d

denote the learnable parameters of the inference model from
xt,n and h(1)

t−1,n to zt,n. In this way, the mean and variance
parameters of the latent variable zt,n are both inferred by
combining the bottom-up likelihood information and the prior
information from the generative distribution using the infer-
ence network. By integrating the indicator variable into the
inference network, the diversity of the structural and temporal
information within the inputs are fused, enabling the proposed
upward-downward multiple variational inference network to
learn the rich latent representation for SGmVRNN.

C. Model Properties

SGmVRNN inherits the good properties of both the proba-
bilistic mixture model and variable RNN, as described bellow.

1) Clustering based on both structural and temporal
characteristics: As introduced in [7] and [9], the probabilistic
mixture model is a wildly used clustering method and it
separates the data into several groups according to their



structure. According to Eq. (7), the posterior of the cluster
indicator variable ct,n can be obtained as

p(ct,n|−) ∝ p(zt,n|ct,n)p(ct,n|πt,n)

=

K∏
k=1

(πt,n,kN (µt,n,k, diag(σt,n,k)))
ct,n,k

=

K∏
k=1

(πt,n,kN (W k
hµh

(1)
t−1,n +W cµ(k, :),

diag(W k
hσh

(1)
t−1,n +W cσ(k. :))))ct,n,k

(17)

As we can see, the parameters of the posterior of ct,n are the
function of both W cµ(1 : K, :),W cσ(1 : K, :), which reflects
the structural characteristics of input at current timestep as
usual mixture model did, and the {W k

hµ,W
k
hσ}Kk=1, which

are the transition matrices that model different temporal de-
pendence of adjacent timesteps. In this way, indicator variable
can reflect both the structural and the dynamic characteristics
of multivariate CDN KPIs.

2) Switching mechanism: As mentioned in [13] and [14],
the switching mechanism is defined as follows. There are
multiple different connection parameters between two vari-
ables, and one parameter within them will be selected so
that it corresponds to current inputs, thus to increase the
representation ability of the model. As mentioned before, no
matter the generation or the inference process of SGmVRNN,
there exists the switching mechanism within them. For the
generation process, {W k

hµ,W
k
hσ}Kk=1 are switched under the

guidance of ct,n to model different temporal dependences
between adjacent timesteps. For the inference process, with
our upward-downward inference method, {W̄ k

hµ, W̄
k
hσ}Kk=1

are also switched to enable the inference network to learn
rich a latent representation.

3) Beneficial to model Multivariate CDN KPIs: The prop-
erties of the SGmVRNN make it more suitable at modeling
of multivariate CDN KPIs, especially for tackling the two
challenges introduced in Section I. For the CDN KPIs of a
single website, SGmVRNN can model the diversity structure
and non-stationary temporal dependence within them. Besides,
for the CDN KPIs from different websites, which exhibit
varying characteristics, previous methods always need to train
different specific groups of parameters to model them. On the
contrary, SGmVRNN can model them with only one group of
parameters for being able to capture the various characteristics
within them by the mixture distributed latent variables, and
then modeling them with the switching mechanism.

IV. MODEL TRAINING

The training objective of SGmVRNN is to minimize
the distance between the variational distribution of la-
tent variables q(zt,n, ct,n) and their true posterior dis-
tribution p(zt,n, ct,n|−), which can be quantified by
the Kullback-Leibler (KL) divergence, KL(q(x)||p(x)) =∫
q(x) log q(x)

p(x)dx. So, during the inference of SGmVRNN, we
aim to minimize KL(q(zt,n, ct,n)||p(zt,n, ct,n|−)). Following

the usual strategy of VAE, we can transfer this KL divergence
as

KL(q(zt,n, ct,n)||p(zt,n, ct,n|−))

= log p(xt,n)− Eq(zt,n)q(ct,n) (log p(xt,n|zt,n, ct,n)

− log
q(zt,n)q(ct,n)

p(zt,n|ct,n)p(ct,n)

)
= log p(xt,n)− ELBO

where ELBO refers to the evidence lower bound. As illustrated
in Eq. (18), minimizing the KL divergence can be transformed
to maximize the ELBO, and we can re-express it as

ELBO = Eq(zt,n)q(ct,n)(log(p(xt,n|zt,n)−
KL (q(zt,n)||p(zt,n|ct,n))− KL (q(ct,n)||p(ct,n))

(18)

where the first term is the expected log-likelihood that guaran-
tees the reconstruction capacity of the generative model, while
the second and the third terms are the KL divergence that
constrains variational distributions to be close to their prior in
the generative model. Specifically, because ct,n is a discrete
variable, the KL divergence between q(ct,n) and p(ct,n) can
be calculated as

KL(q(ct,n)||p(ct,n))

=

K∑
k=1

[qk log qk]−
k∑
i=1

[qk log p (ct,n,k = 1)]

=

K∑
k=1

[qk log (qk)]− log

(
1

k

) (19)

where qk denotes q (ct,n,k = 1). As we assign the prior of
latent variables as mixture Gaussian distribution, the KL
divergence between the variational distribution q(zt,n) and the
conditional prior p(zt,n|ct,n) can be derived as

KL(q(zt,n)‖p(zt,n | ct,n))

=

∫ ( K∑
k=1

ct,n,kq(zt,n) log
q(zt,n)

N
(
µt,n,k,σt,n,k

))

=

K∑
k=1

ct,n,kKL
(
q(zt,n)‖N

(
µt,n,k,σt,n,k

)) (20)

Then, the KL-divergence between two Gaussian distribution
has an analytic expression as

KL(N (µ1, diag(σ1))||N (µ2, diag(σ2))) =

1

2

[
log

σ1

σ2
− d+ σ−1

2 σ1 + (µ1 − µ2)T diag(σ−1
2 ) (µ1 − µ2)

]
(21)

Thanks to the analytic KL expression in Eqs. (19), (20)
and (21), and also easy reparameterization of the Gumble-
softmax and Gaussian distribution, the gradient of ELBO
with respect to the parameters in the inference network can
be accurately evaluated. We list the details of the upward-
downward autoencoding variational inference for SGmVRNN
in Algorithm 1. As described in Algorithm 1, the encoder
parameters, defined as Ω, and decoder parameters, defined as
Ψ, in SGmVRNN are jointly updated with stochastic gradient
descent (SGD).



Algorithm 1 Upward-Downward Autoencoding Variational
Inference for SGmVRNN

Input: The pre-processed KPI training dataset D (x1:T );
Output: The encoder parameters of SGmVRNN:
Ω =

{
D,W hy, {W k

hµ,W
k
hλ}Kk=1

}
;

the decoder parameters of SGmVRNN:
Ψ =

{
D̄, {W̄ k

hµ, W̄
k
hλ, W̄

k
xµ, W̄

k
xλ}Kk=1, W̄ xh, W̄ hh, W̄ hy

}
;

and the parameter of recurrent network θ;
Set mini-batch size as M , the number of convolutional filters K
and hyperparameters;
Initialize the encoder parameters Ω, decoder parameters Ψ and
recurrent parameters θ;
repeat

Randomly select a mini-batch of M multivariate CDN KPIs
consist of T subsequences to form a subset {x1:T,i}Mi=1;
Draw random noise

{
εct,n
}T,M
t=1,n=1

and
{
εzt,n
}T,M
t=1,n=1

from
uniform distribution for sampling latent states {ct,n}T,Mt=1,n=1

and {zt,n}T,Mt=1,n=1;
Calculate ∇ΩL

(
Ω,Ψ;X, εct,i, ε

c
t,i

)
according to Equation (18),

(19), (20) and (21), and update encoder parameters Ω and
decoder parameters Ψ jointly;

until convergence
return global parameters {Ω,Ψ,θ}.

TABLE I: Basic statistics of datasets

Statistics KPIs of CDN KPIs of SMD
Dimensions 31*36 28*38

Granularity (sec) 60 60
Training set size 1,227,249 708,405
Testing set size 1,227,250 708,420

Anomaly ratio (%) 3.68 4.16

V. ANOMALY DETECTION

Since the model is usually trained to learn the normal
patterns of multivariate CDN KPIs, the more an observation
follows normal patterns, the more likely it can be reconstructed
with higher confidence. Hence, we apply the reconstruction
probability of xt as the anomaly score to determine whether
an observed variable is anomalous or not [3], [30]–[33], and
it is computed as

St,n = log p(xt,n|zt,n) (22)

An observation xt will be classified as anomalous if St is
below a specific threshold. From a practical point of view, we
use the Peaks-Over-Threshold (POT) [34] approach to help
select such threshold. In our case, the lower anomaly scores are
more likely considered to be extreme values, because the lower
anomaly score, the greater the probability of outlier. Therefore,
similar to [3], we adopt the lower-bound thresholds.

VI. EXPERIMENT

In this section, we first introduce the experiment setup and
then evaluate our model via various experiments.

A. Experiment Setup

1) Dataset: We make extensive experiments on two cate-
gories of real-world datasets: a CDN multivariate KPI dataset
and a public dataset named SMD that was released by the
work [3]. CDN multivariate KPI dataset is collected from a

popular ISP-operated CDN in China, and the dataset contains
31 websites that are monitored with 36 KPIs individually.
These websites are different from each other in types of
services, etc. In our experiments, for each website, the first
half of the KPIs are used for training, while the second half are
used for testing. Note that for the experiment “one model fits
all websites”, we aggregate all of the training set to train the
model, while in the experiment “one model for one website”,
the models are trained on each website dataset individually.
The basic statistical information of datasets is reported in Table
I, and the ground-truth anomalies in the test set of CDN have
been confirmed by human operators. Please refer to [3] for
more details of the public dataset SMD.

2) Evaluation metrics: Three metrics, including Precision,
Recall and F1 score, are employed as the performance in-
dicators [2]–[5], [32], [35]. Among them, F1 is deemed as
a comprehensive indicator since it balances the precision
and recall. Note that, in practice, if any point in a ground-
truth anomaly segment is correctly detected, all points in
the ground-truth anomaly segment will be identified as true
positive [3], [5].

3) Compared baselines: We employ the state-of-the-art
deep anomaly models as the baseline methods, including
1) VRNN [15], a probabilistic model that extends the VAE
into a recurrent framework for modelling high-dimensional
sequences; 2) DOMI [31], a deep model that combines Gaus-
sian mixture VAE (GmVAE) with 1D-CNN to detect outlier
machine instances; 3) OmniAnomaly [3], a stochastic RNN-
based model; 4) SDFVAE [5], a static and dynamic factorized
VAE-based framework to conduct anomaly detection for each
CDN website individually.

4) Hyper-parameters: In our experiments, we implement
SGmVRNN based on Pytorch. Both the CNN encoder and
DCNN decoder are with 3 of 1-dimension convolutional
layers, whose filters and strides are set to (3,3), (2,2), (2,2)
successively. The dimensions of the hidden states of LSTM-
Cell are 20. Besides, we set z-space and categorical-space
dimensions to 10 and 5 empirically. The Adam optimizer
is employed with a learning rate of 0.0002, and the batch
size is set to 256. Besides, we set the initial temperature λ
in Gumbel-Softmax to 5.0, and anneal to a small but non-
zero temperature, e.g., 0.1, with rate 0.1 per epoch. And the
probability p associated with the initial threshold used in POT
is set to 0.003 empirically.

5) Hardware platform: Our experiments are conducted on
servers with Intel(R) Xeon(R) CPU E5-2667 v3 @ 3.20GHz
accelerated by two NVIDIA RTX 8000, with 48GB VRAM
of each graphics card.

B. Quantitative Comparison

1) The influence of model parameters: In this part, we
discuss the sensitivity of model parameters, which includes the
the number K of clusters and dimension d of latent variables.

Fig. 5 (left) presents the changing curve of the F1-score
with the increasing clustering number, which determines the
number of switching parameters of SGmVRNN. As shown in



TABLE II: Performance of “one model for one website”.

Methods CDN SMD
P R F1 P R F1

VRNN 0.9578 0.9012 0.9286 0.9139 0.9346 0.9241
DOMI 0.9376 0.8781 0.9069 0.9425 0.9125 0.9273

OmniAnomaly 0.9832 0.8755 0.9262 0.8290 0.9681 0.8932
SDFVAE 0.9428 0.9385 0.9407 0.9717 0.9035 0.9364

SGmVRNN 0.9595 0.9448 0.9521 0.9514 0.9290 0.9400

TABLE III: Performance of “one model fits all websites”.

Methods CDN SMD
P R F1 P R F1

VRNN 0.9814 0.8317 0.9003 0.9825 0.8383 0.9047
DOMI 0.9665 0.8348 0.8958 0.9770 0.8036 0.8819

OmniAnomaly 0.8385 0.8757 0.8567 0.9801 0.7843 0.8713
SDFVAE 0.9675 0.8615 0.9115 0.9810 0.8498 0.9107

SGmVRNN 0.9667 0.9204 0.9430 0.9607 0.9123 0.9356

Fig. 5 (left), the F1-score of the SGmVRNN first increases
and then decreases a little bit with the number of clusters
ranging from 1 to 10. The main reason for this phenomenon
is that a very small number of clusters cannot characterize
all the structural patterns within CDN KPIs. Similarly, a sub-
optional high number of clusters is likely to produce redundant
parameters in the SGmVRNN, which will increase memory
burden and computational complexity, thus resulting in worse
performance.

Second, we evaluate the effect of the dimension d of latent
variables and list the F1 scores of the proposed model with
different values of d in Fig. 5 (right). The anomaly detection
performance is improved along with the increase of the hidden
state dimensions, for the promotion of representation power.
However, the higher dimension of the hidden states will result
in higher computational cost, even though at a certain point it
does not help the score improve.

2) Anomaly Detection Performance: To evaluate the per-
formance of SGmVRNN, the experiments of “one model for
one website” and “one model fits all websites” are performed
and the results are reported in Table II and Table III respec-
tively. The best F1-score on each dataset is highlighted in bold-
face.

In the experiments of “one model for one website”, SG-
mVRNN outperforms all the baselines, verifying the efficiency
of the proposed switching mechanism in modeling the non-
stationary temporal dependence in multivariate KPIs. Simi-
larly, in the experiments of “one model fits all websites”, as we
can see, by considering both structural and dynamical diversity
within CDN KPIs from different websites, and incorporating
mixture distributed variable and switching mechanism for
characterizing them, SGmVRNN outperforms all the baselines
on all test datasets, showing its efficiency in anomaly detection
of diverse CDN websites. Moreover, by comparing the results
in Table II and Table III, we obtain an interesting observa-
tion: SGmVRNN only decreases less performance from the
experiment of “one model for one website” to “one model
fits all websites”, while the other baseline methods show

Fig. 4: Ablation study of SGmVRNN

Fig. 5: Varying Dimensions of Latent Variables

the significant decrease of performance, e.g., the results of
OnmiAnomaly on CDN dataset. This indicates that the mixture
distributed variables and switching mechanism play an impor-
tant role in the performance improvement of SGmVRNN.

3) Ablation Study: We conduct ablation study to analyze
the importance of switching and recurrent structure in our
model by comparing the results of SGmVRNN, SGmVRNN
w/o switching by setting K = 1, SGmVRNN w/o recurrent by
setting T = 1 and the basic VAE. Observations can be drawn
from the experimental results that are shown in Fig. 4. As we
can see, every structures we incorporate into SGmVRNN can
bring improvement on performance, illustrating the effective-
ness of each component in it.

C. Qualitative Analysis

In addition to quantitative analysis, we also make some
qualitative analyses in this subsection.

First, to show intuitively the efficiency of our mixture dis-
tributed latent variable and switching mechanism, we visualize
an case study of SGmVRNN in Fig. 6. Fig. 6 (a) shows a non-
stationary multivariate time series with diverse structural and
temporal characteristics at different timesteps, which is the
challenge 1 introduced in Section I. To tackle this challenge,
as a probabilistic mixture model, SGmVRNN clusters the
multivariate time series in Fig. 6 (a) into several groups and
the clustering indexes are shown in Fig. 6 (b). As we can
see, the clustering groups reflect the structural and temporal
characteristics at different tiemsteps. Besides, as shown in
Figs. 6 (c) and (d), by the aid of the switching mechanism and
guided by the clustering index in Fig. 6 (b), SGmVRNN can
model the input at different timesteps assigned into different
cluster groups with different parameters, thus leading to a
more stable anomaly score when compared to VRNN, while
it exhibits considerable spikes in the regions of anomalies.
It further demonstrates the capability of SGmVRNN to learn
normal patterns of complex KPIs.

We also visualize the 2D embedding of the latent variables
on SGmVRNN on four example multivariate CDN KPIs from



TABLE IV: Training and testing time of SGmVRNN

Datasets # Training
samples

Training times per
epoch (min)

Testing times per
sample (sec)

CDN 1,227,228 7.3 0.093
SMD 708,399 4.67 0.098

(a) (b)

(c) (d)
Fig. 6: Case study of (a) multivariate CDN KPIs; (b) clustering
index; (c) anomaly score by SGmVRNN; (d) anomaly score
by VRNN.

(a) (b) (c) (d)
Fig. 7: The visualization of latent variables zt,n

different websites using t-distributed stochastic neighborhood
embedding (t-SNE) [36] methods in Fig. 7. Each dot in Fig. 7
represents the latent variable of the observation at a certain
timestep, and each color represents a clustering group. From
Fig. 7, we can observe the following properties on the latent
variable zt,n: 1) There are different structural characteristics at
different timesteps of KPIs from one website and our model
can separate them into different clustering groups; 2) There
are some similar characteristics shared among all websites,
such as cluster group 0, 1, 3 in Fig. 7; 3) Different websites
may also exhibit some specific structural characteristics, such
as cluster group 2, 4 in Fig. 7 (d). Note that Fig. 7 (a) shows
the corresponding visualized latent variables of Fig. 6 (a). All
these results conform with the two challenges listed in Section
I and indicate that our model can represent these challenged
features with the mixture distributed latent variables, thus to
verify the effectiveness of SGmVRNN.

D. Time Efficiency

Table IV shows the time efficiency of SGmVRMM in term
of its training and testing time on the hardware platform
introduced in the subsection VI-A. It can be seen from
Table IV that SGmVRMM can perform anomaly detection for
a sample within one-tenth second versus the data collecting
interval of 60 seconds. Hence, SGmVRMM can be deployed
in the manner of offline training and online detection [3], [5].

VII. RELATED WORK

Anomaly detection for multivariate time series has been
an active topic in data science. More recent studies have
shifted from the traditional statistical-based anomaly detection
[37], [38] to machine learning-based ones [39] that can be

classified into two primary categories, i.e., supervised [40]–
[42] or unsupervised [1]–[6], [31], [35], [43] methods. Due to
the labor-intensive data labeling and lack of anomaly instances
in real-world scenarios, supervised methods tend to become
impractical. Hence, unsupervised deep anomaly detection has
been widely investigated in recent years. Among them, one
line of the research mainly focus on learning of the spatial
characteristics in the multivariate metrics but ignore the tem-
poral dependency across the varying timesteps [4], [6], [31].
Another kind of algorithm is seminal RNN-based anomaly
detection, modelling the temporal characteristics via recurrent
network structure [1]–[3], [5], [43]. Typically, MAD-GAN
[1] employs an LSTM-RNN structured generative adversarial
network framework to capture the normal temporal and spatial
patterns, and OmniAnomaly [3] designs a stochastic-RNN
(SRNN) model to help learn the robust representation. Re-
cently, SDFVAE [5] introduced a static and dynamic factorized
VAE-based framework to explicitly learn the time-invariant as
well as time-varying characteristics.

Although the existing RNN-based anomaly detections have
shown the effectiveness in some real-world scenarios, however,
they cannot deal well with the anomaly detection for various
CDN websites, especially in one model, due to the non-
stationary temporal dependencies in the KPIs for an indi-
vidual website as well as the varying characteristics in the
KPIs for diverse websites. Compared with previous studies,
SGmVRNN is the first anomaly detection method that can
potentially capture the non-stationary temporal patterns and
various characteristics of diverse websites simultaneously by
designing a switching mechanism.

VIII. CONCLUSION

In this paper, we propose a switching Gaussian mixture vari-
ational RNN (SGmVRNN) to cope with the anomaly detection
challenges that brought by the natural characteristics of multi-
variate CDN KPIs of diverse websites. SGmVRNN brings in a
variational recurrent structure and assigns its latent variables
into a mixture Gaussian distribution and thus it can model
complex KPI time series and capture the diversely structural
and dynamical characteristics within them. With a switching
mechanism, SGmVRNN learns richer representations of KPIs.
Furthermore, an upward-downward autoencoding inference
method which combines the bottom-up likelihood and up-
bottom prior information of the parameters for accurate pos-
terior approximation is developed. The extensive experimental
results demonstrate that SGmVRNN outperforms the state-of-
the-art approaches in terms of F1-score and show the great
superiority in one model that fits multiple websites.
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