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ABSTRACT

Depth estimation for panorama is a key part of 3D scene
understanding, and adopting discriminative models is the
most common solution. However, due to the rectangular
convolution kernel, these existing learning methods cannot
efficiently extract the distorted features in panoramas. To
this end, we propose OmniVAE, a generative model based
on Conditional Variational Auto-Encoder (CVAE) and von
Mises-Fisher (vMF) distribution, to strengthen the exclusive
generative ability for spherical signals by mapping panora-
mas to hypersphere space. Further, to alleviate the side effects
of manifold-mismatching caused by non-planar distribution,
we put forward the Atypical Receptive Field (ARF) module
to slightly shift the receptive field of the network and even
take the distribution difference into account in the recon-
struction loss. The quantitative and qualitative evaluations
are performed on real-world and synthetic datasets, and the
results show that OmniVAE outperforms the state-of-the-art
methods.

Index Terms— Panorama, depth estimation, hypersphere
space, conditional variational auto-encoder

1. INTRODUCTION

In recent years, predicting depth from omnidirectional images
has been widely demanded for 3D reconstruction applications
However, early studies, including manually defining monoc-
ular cues [1, 2] and next learning-based methods [3, 4], are
designed only for perspective images.

The rich semantic information in omnidirectional im-
ages conduce to improving the prediction accuracy. But due
to the impact of projection distortion, depth estimation for
panorama becomes more challenging. Omnidepth [5] follows
an autoencoder structure, using two networks to extract planar
and spherical features, respectively. Jin et al. [6] adopt layout
information, and Wang et al. [7] use the inputs of multiple
projection formats to construct a depth extraction framework.
The encoder network designed by Sun et al. [8] compresses

*Corresponding author. This work was supported by the Cooperation
project between Chongqing Municipal undergraduate universities and insti-
tutes affiliated to CAS (HZ2021015).

the equirectangular projection (ERP) image longitudinally
as the disentangled representation for various image tasks.
Most of these existing methods build discriminative models
based on rectangular convolution kernel. Nevertheless, the
receptive field of the traditional square convolution is sub-
ject to Gaussian distribution [9] after several iterations. As
an ERP image naturally represents the spherical signal, the
potential receptive mode on a plane cannot accurately extract
spherical-shaped features or be customized in discriminative
structures. Though the classic conditional variational auto-
encoder (CVAE) [10] is one way to summarize signals onto a
specific space explicitly [11, 12], most of these methods, be-
ing improved under the premise of the conventional Gaussian
distribution, are limited to perspective images and inefficient
for spherical panoramas.

In order to solve the above issues, we propose a gen-
erative model OmniVAE based on CVAE with von Mises-
Fisher (vMF) distribution for panorama depth estimation.
For one thing, the specific encoder-decoder scheme of VAE
contributes to getting a clearer patch boundary and explic-
itly defining representation space; for another, the adopted
CVAE models well the mapping from one input to many
possible outs by multiple sampling, which is helpful to solve
the uncertainty and ambiguity in depth inference. The main
contributions are summarized as follows:

• We propose a generative model for panorama depth es-
timation, generating latent variables on a hypersphere
space with the more appropriate vMF distribution.

• We put forward an atypical encoder to slightly disrupt
the receptive field of the standard convolution to adapt
to the discomfort caused by the distribution changes.

• We limit the depth value decoded from hyperspherical
hidden variables to linear space by extending the distri-
bution difference to the reconstruction loss.

2. PROPOSED METHODS

2.1. OmniVAE for Panorama Depth Estimation

The classic structure of VAE compresses the observed sample
x into specific latent variables z (usually subject to Gaussian
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Fig. 1: An overview of the proposed OmniVAE framework for panorama depth estimation. ‘ c⃝’ denotes concatenation. The
inputs include the conditional RGB panorama x and the corresponding ground truth y during the training stage. Features of
the two inputs are extracted separately and then merged to be encoded onto the hypersphere space. After fusing with the ARF
features, the latent variables are processed by the decoder to infer depth map ŷ. In the inference stage, the latent vector from
the prior network is re-parameterized to participate in the decoding process. Note that we use the Monte Carlo (MC) sampling
to draw multi-samples and take the average value of the outputs as the final result.

distribution p(z) on a plane) through the encoder qψ(z|x) (a
parameterized network). It then reconstructs x by decoder
pϕ(x|z).

Actually, we need to generate many possible candidate
depth values for one pixel in a panorama for the depth estima-
tion task. Accordingly, we adopt the CVAE model as the basic
structure, as shown in Fig. 1. The feature from the depth map
y is extracted by the CNN-Encoder qψ(z|x,y) conditioned
by the original RGB image x and then be squeezed onto a
hypersphere as the posterior distribution of latent variables z.
Here we choose the von Mises-Fisher (vMF) distribution,

Fd(µ,κ) =
κd/2−1eκµ′z

(2π)d/2Id/2−1(κ)
, z ∈ Rd−1, (1)

as the priori to the hidden variables since panorama is derived
from spherical imaging. The parameter Rd−1 indicates d-
sphere, µ the mean direction, and κ the concentration. where
Iv indicates the modified Bessel function of the first kind tra-
versed in the direction v. We parameterize the distorted fea-
tures by the vMF manifold since panoramas essentially repre-
sent the spherical signal. Note that vMF, as mentioned in S-
VAE [13], is often taken as the normal Gaussian distribution
on a hypersphere and therefore more conducive to expressing
spherical information and eliminating the soap bubble effect.

The inputs of OmniVAE during the inference stage only
contain the conditional part (i.e., RGB panorama). We design
a prior network to generate the prior distribution Fd(µc,κc)
from the conditional RGB panorama x, which yields better re-

construction results by approximating the posterior distribu-
tion Fd(µe,κe) produced by the encoder during the training
stage.

As the conditional part, feature extraction of RGB panora-
mas is carried out in both the training and inference stages and
even the only information source during the inference stage.
In order to improve the utilization of these features, we use the
relatively more complex module ARF for feature extraction
with the shifted receptive field. The receptive field of the fol-
lowing convolution, called Atypical Encoder (Decoder), will
be slightly irregular in contrast to the standard CNN Encoder
(Decoder). It should be emphasized that the term atypical
refers to the variation of the feature map receptive field at
each stage of the network rather than the variation of the net-
work structure. The feature from ARF is directly processed
by the decoder, as shown in Fig. 1, which is also a critical
factor for the encoder-decoder model with skip connection to
restore a clear target boundary throughout the network path.

2.2. Atypical Receptive Field (ARF) Module

The receptive field of the feature map after multi-layer tra-
ditional convolution is subject to the Gaussian distribution
as described in Section 1. Still, our goal is to represent the
panorama signal in a hypersphere space, which brings the
manifold-mismatch problem. As a result, we add more non-
linear characteristics to the feature extraction network through
an attention-based weighted-RFs structure called the atypical
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Fig. 2: An overview of the ARF Module. ‘ w⃝’ indicates
weighting operation, and ‘×⃝’ indicates correlation computa-
tion. The RF attention module weights the feature map with
different sizes of RFs from multi-scale atrous convolution.
Visualization of the weighting at the pixel level is shown in
the dotted frame.

receptive field module to offset the receptive fields. Through
the atypical nonlinearity of the receptive field, the network
can express the panorama signal on the hypersphere.

After the backbone network, as shown in Fig. 2, multi-
scale atrous convolution [14] is employed to produce feature
maps with different sizes of receptive fields. After concate-
nation along the channel dimension, these feature maps are
processed by the RF attention module to generate the corre-
sponding weights for each atrous rate. There are two pool-
ing operations in the RF attention module—along the channel
and spatial dimension successively—to obtain RF-granularity
weights before the MLP (Multilayer Perception). Then the
similarities between the weighted feature maps and the origi-
nal ones (we choose matrix multiplication here) are computed
to generate the final outputs. In order to eliminate aliasing ef-
fects, we add additional convolutional layers before weight-
ing and correlation operations. Fig. 2 also shows the pixel-
level weighting results. The weights obtained from the atten-
tion module determine the contribution of different RFs to the
same pixel.

2.3. Loss Function

Taking RGB panorama as the condition, the ELBO is format-
ted as:

ELBO = Ez∼qψ(z|x,y) log pϕ(y|x, z)
−DKL(qψ(z|x,y)∥pϕ(z|x)),

(2)

which is derived from standard VAE. DKL is the function of
Kullback-Leibler (KL) divergence, and z is a differentiable

reparameterization transformation of the output of the prior
network. We minimize the KL divergence between the poste-
rior distribution from the depth map y conditioned by RGB x
and the prior distribution generated by x only as:

LKL Div =

∫
qψ(z|x,y) log

qψ(z|x,y)
pϕ(z|x)

dz. (3)

Since we explicitly fix the latent variables of the panorama
on the hypersphere space, we can reasonably assume that the
output ŷ is subject to spherical distribution qs(ŷ), while the
depth value y is subject to the Dirac distribution pδ(y) on the
linear space. More specifically, it should be taken into account
that the depth information in nature follows a linear smooth
variation but we transfer the image signal to the hypersphere,
which introduces the problem of misfitting with the linear dis-
tribution. Therefore, we constrain the depth value in the loss
function by splitting the reconstruction loss into KL diver-
gence and the regression loss inspired by KL Loss [15]. The
total loss function is formalized as:

L = α · LKL Div + β · LKL Rec + LReg

= α · LKL Div + β ·
∫
y

qs(ŷ) log
qs(ŷ)

pδ(y)
dy + ∥y − ŷ∥,

(4)
where the balance parameters α and β are empirically set to
0.5 and 0.1 according to their respective importance.

3. EXPERIMENTS

3.1. Datasets and Settings

We evaluate the proposed OmniVAE with two datasets, Stan-
ford2D3D [16] and 3D60 [5]. The real-world dataset Stan-
ford2D3D contains 1413 panoramas, and the fifth area is used
for testing. Provided by Omnidepth, 3D60 is generated from
real-world datasets Stanford2D3D, Matterport3D [17], and
synthetic dataset SUNCG [18]. According to the official guid-
ance, we use the provided script to split the training and test-
ing sets. The network is trained on NVIDIA TITAN XP (12G)
GPU with the batch size of 10. We choose Xception [19] as
the backbone and optimize the network by stochastic gradient
descent (SGD) with the momentum of 0.9 and the learning
rate of 1e−3 decaying by a rate of 5e−4.

3.2. Performance Comparison

We use the common depth estimation error metrics—MAE,
MRE, RMSE, RMSElog, and three accuracy metrics δ with
different thresholds, to compare the performance of the pro-
posed network with that of the state-of-the-art discriminative
models, OmniDepth [5] and BiFuse [7]. As shown in Table 1,
OmniVAE takes the lead in estimation performances of all
three methods. Specifically, OmniVAE reduces the MAE by
more than 22% and improves the accuracy metric of δ < 1.25
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Fig. 3: Qualitative comparisons of the estimated dense depth on 3D60.

Table 1: Quantitative comparisons on Stanford2D3D and 3D60. The numbers in bold indicate the best results.

Dataset Method MAE MRE RMSE RMSE(log) δ1.251 δ1.252 δ1.253

Stanford2D3D
OmniDepth [5] 0.3743 0.1996 0.6152 0.1212 0.6877 0.8891 0.9578

BiFuse [7] 0.2343 0.1209 0.4142 0.0787 0.8660 0.9580 0.9860
Ours 0.1814 0.0917 0.2876 0.0515 0.9354 0.9928 0.9980

3D60
OmniDepth [5] 0.1706 0.0931 0.3171 0.0725 0.9092 0.9702 0.9851

BiFuse [7] 0.1143 0.0615 0.2440 0.0428 0.9699 0.9927 0.9969
Ours 0.0994 0.0447 0.2156 0.0358 0.9728 0.9940 0.9979

Table 2: Ablation study results on Stanford2D3D.

Method
CVAE

(Gaussian)
OmniVAE

(vMF)
OmniVAE

(+ARF)
OmniVAE

(+KL Rec)
MAE 0.3637 0.3095 0.2460 0.2892

RMSE 0.4426 0.3924 0.3371 0.3748
δ1.251 0.8009 0.8553 0.9036 0.8733

by 6.94% on Stanford2D3D, compared to BiFuse. It should
be noted that the performance of OmniVAE is achieved by in-
puts of ERP format-only, while BiFuse combines the ERP and
Cube map formats of omnidirectional images. Besides that,
since 3D60 comprises multi-modal stereo renders of scenes
from realistic and synthetic datasets, the outperformance on it
indicates our proposal has strong generalization capability.

Fig. 3 shows the qualitative comparisons of several sam-
ples, the dark region of the ground truth indicates unavail-
able depth. We use the officially provided model for testing.
For better observation, we employ color mapping to pseudo-
colorize grayscale depth images. Given the distinct distor-
tion levels in different latitudes in ERP, we can intuitively see
that OmniVAE makes the boundary clearer and better predicts
fine-grained details than other methods in various positions
thanks to the hypersphere manifold and the shiftable recep-
tive field.

3.3. Ablation Studies

We perform ablation studies on Stanford2D3D. The baseline
is the classic CVAE model with Gaussian distribution. As
shown in Table 2, OmniVAE compresses latent variables on
hypersphere to improve the accuracy of δ < 1.25 and reduce
the MAE by more than 0.05. Due to the better perception of
spherical signal, the ARF module significantly improves the
performance, reducing MAE and RMSE by more than 0.06
and 0.05, respectively. It also indicates that strengthening the
feature extraction ability of the conditional branch can effec-
tively improve the performance of CVAE. Moreover, intro-
ducing KL Loss to reconstruction loss enhances the accuracy
metric by nearly 2%.

4. CONCLUSION

We propose a generative model OmniVAE for 360◦ panorama
depth estimation. We encode the image information onto the
hypersphere space to reduce the side effects of distortion and
introduce the ARF module for the encoding part of the net-
work. In addition, we consider the KL divergence between
the vMF and Dirac distribution in the loss function to lin-
earize the outputs. The experimental results show that Om-
niVAE can achieve better performance than the state-of-the-
art methods in multiple metrics on real-world and synthetic
datasets.
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