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ABSTRACT

Panoramic images are usually viewed through Head Mounted
Displays (HMDs), which renders only a narrow field of view
from the raw panoramic image. This distinctive viewing fea-
ture has largely been ignored when inpainting panoramic im-
ages. To address this issue, we propose a viewport-oriented
generative adversarial panoramic image inpainting network
in this paper. For capturing the distorted features accurately
in the generating process of equirectangular projection (ERP)
panoramic image, a latitude-adaptive feature fusion module
is devised to aggregate the latitude-level features in ERP im-
age and less-distorted patch-level viewport-domain features.
Furthermore, a novel cross-domain discriminator is proposed
to force the inpainting network to generate more plausible
results in viewports. Extensive experiments show that our
model achieves better performance compared to the baseline
methods, especially in the viewport images.

Index Terms— panoramic image, virtual reality, image
inpainting

1. INTRODUCTION

Panoramic images (PIs) have attracted much attention in re-
cent years since they can represent the omnidirectional visual
contents. With an increasing need of processing and edit-
ing PIs in our daily life, inpainting has become an important
task in various PI applications, such as privacy protection in
panoramas [1], old panoramic photo restoration, and also PI
post-processing for AR [2].

Early image inpainting methods devote to copying pixels
from the unmasked regions to fill in holes, but they are inef-
ficient for images with large holes [3]. Applying deep con-
volutional neural networks (CNNs) [4] to image inpainting
problems has made great progress in recent years. Typically,
aiming for irregular holes inpainting, LBAM [5] and Contex-
tual Residual Aggregation(CRA) [6] improve the Generative
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Adversarial Network (GAN) with attention module. How-
ever, these methods are originally designed targeting the pla-
nar perspective images and perform poorly on PIs. The con-
tents in PIs are usually deformed during the equirectangular
projection (ERP) from the raw spherical signal [7] and cor-
respondingly the conventional CNNs fail to extract features
from them accurately.

Fig. 1. Our inpainting network aims to generate images with
more realistic results in viewports besides the ERP image.

Recently, several pioneer studies were proposed for
panoramic image/video inpainting. Some of them improve
the off-the-shelf methods for PIs by applying either seman-
tic conditioning [2, 8] or depth information [1]. Besides,
some researchers are interested in exploring other projec-
tion formats (such as Cubemap in PIINET [9]) to introduce
less distortion. PIs are usually viewed with freely change-
able viewports via Head Mounted Displays (HMDs). The
above-mentioned methods do not take this viewing feature
into account, and the generated image may also work poorly
in HMDs.

Considering the viewing process of PIs, we propose a
viewport-oriented generative adversarial PI inpainting net-
work. An abstract representation of viewport-oriented in-
painting is illustrated in Fig. 1. Specifically, we first introduce
a latitude-adaptive feature fusion module to guide the genera-
tor to capture and generate discriminative features adaptively.
The module is designed with a dual-layer structure to fuse the
latitude-level features in ERP image and less-distorted patch-
level viewport-domain features. Then, we further suggest a
cross-domain discriminator to urge the network to generate
more desirable results towards viewports besides the ERP



image. Extensive experiments are performed with varying
ratio of the masked area, and the results show that our method
is superior to the existing methods.

2. METHOD

For the previous inpainting methods, the imperfect inpaint-
ing noises in ERP image will be transferred to the viewports
during viewing via HMDs. Due to the affection of viewport
rendering, the inpainting noise in ERP images may be mag-
nified in the viewports. To achieve more satisfying results in
both ERP and viewport images, we introduce the viewport in-
formation to both the generator and discriminator to optimize
the inpainting GAN.

2.1. Overview

The proposed PI inpainting pipeline is shown in Fig. 2. It re-
pairs the damaged image Iinput with GAN including a gener-
atorG to predict the inpainted image Iout and a cross-domain
discriminator to distinguish the authenticity of repaired image
Ire. The repaired image Ire is the result of replacing the hole
region (masked as M ) using the generated image Iout,

Ire = Iout ⊗M + Iinput ⊗ (1−M), (1)

where ⊗ denotes the element-wise multiplication operation.
In the generator, latitude-adaptive feature fusion module

aggregates the features from both the ERP patches {Bij} and
their corresponding viewport patches {Aij} to generate the
implicit information map IIM . IIM connects the symmet-
rical layers in encoder and decoder of generator, providing
available gradients so that the network parameters can be op-
timized through back-propagation. In the cross-domain dis-
criminator, the authenticity of Ire is measured in both ERP
domain (DERP sub-discriminator) and viewport domain (DV

sub-discriminator).

2.2. Latitude-Adaptive Feature Fusion

Aiming for extracting effective features that are rarely af-
fected by the distortion in ERP image, the latitude-adaptive
feature fusion module is designed in two tiers: the latitude-
level feature extraction (LLFE) is used to describe the latitude-
adaptive dependency while the patch-level feature extraction
(PLFE) aims at building a bridge connecting ERP features
and viewport patches.

The detailed building blocks for the dual-layer design are
shown in Fig. 2. To model the long-range latitude-dependent
contextualization, LLFE joins viewport features GVi in the
same latitude i and the deep semantic features hf of Iinput.
hf is the encoder layer group of the generator. To aggre-
gate local information more precisely, we establish the corre-
spondence between ERP image patches {Bij} and viewport
patches {Aij} by PLFE.

Patch-level feature extraction. Firstly, the ERP image
Iinput is divided evenly into several patches {Bij}. For each
patch Bij , taking the center point (i, j) as the viewport ren-
dering center, we get the patch group {Aij} through viewport
projection with 90◦ field of view(FOV). In Fig. 2, this proce-
dure is called E-to-V projection. We leverage the pre-trained
VGG-16 network as the backbone to extract effectively se-
mantic visual information {pij} and {qij},

pij = V GG16(Bij), qij = V GG16(Aij) (2)

For each location in i ∈ (0, n−1) and j ∈ (0,m−1), the
patch-level implicit information PFij is calculated between
pij and qij ,

PFij = ψ(pij , qij) (3)

where n and m are the numbers of latitudes and longitudes in
the PI, respectively. In the implementation, we chose m = 4
and n = 4 to cover the whole sphere, and ψ is a calculation
function realized by elaborate Gated Convolution(GC).

Latitude-level feature extraction. For latitude i ∈
(0, n − 1), the latitude-level feature value LFi is calculated
by feature groups GVi = {qi1, qi2, ...qim} in latitude i and
the feature maps of the whole ERP image hf ,

LFi = Φ(GVi, hf) (4)

where Φ is a GC function.
Feature fusion. At the pixel position with latitude i ∈

(0, n− 1) and longitude j ∈ (0,m− 1), the results of LLFE
LFi and PLFE PFij are finally combined as IIMij ,

IIMij = ω(LFi, PFij), (5)

where ω is a GC function. To make the parameter-updating
automatically, we add IIM to the high-level decoding layers
in generator for training.

2.3. Cross-domain Discriminator

To obtain more reasonable result, the discriminator is de-
signed in a cross-domain manner: DERP is utilized to assist
in generating images that conform to the distribution char-
acteristics of ERP images and DV aims to strengthen the
model to generate images with better visual quality in HMDs.
For the output of the discrimination path, the adversarial
generating loss Ladv is defined as the combination of ERP
adversarial loss lERP and viewport adversarial loss lV ,

Ladv = λ · lERP + (1− λ) · lV (6)

where λ is the tradeoff parameter. In our implementation,
we empirically set λ = 0.5. Following WGAN-GP [10], we
formulate the lERP as,

lERP = max
G

min
DERP

EIgt∼pdata(Igt)DERP (Igt)

−EIre∼pdata(Ire)DERP (Ire)

+λ0EÎ∼pdata(Î)((∇||DERP (Î)||)2)2

(7)



Fig. 2. Viewport-oriented PI inpainting pipeline. The damaged PI in ERP format is inputted into Generator. During training,
the latitude-adaptive feature fusion module generates the implicit information map IIM to connect encoder layers and decoder
layers in Generator. Repaired image Ire is fed to the cross-domain discriminator for adversarial training.

where Igt denotes the ground truth image. Î is sampled from
the distribution of Igt and Ire by linear interpolation, and λ0
is set to 10 in our implementation.

Usually, humans have the highest vision acuity in 60◦

FOV, and the common HMDs cover 120◦ FOV [11]. Thus
in DV , we make a coarse and fine-grained multi-FOV infor-
mation extraction via combining 60◦ FOV Ire60◦ and 120◦

FOV Ire120◦ . The details of DV are shown in the block in
bottom-right corner in Fig. 2, The viewport features are ex-
tracted by a co-trained CNN FV . The viewport adversarial
loss lV is defined as,

lV =
1

2
(||

∑
(FV (Ire60◦) + FV (Ire120◦)) ∗ Lm×n

−
∑

(FV (Igt60◦) + FV (Igt120◦)) ∗ Lm×n||1)
(8)

where n and m are the numbers of latitudes and longitudes
selected for viewport rendering, respectively, and Lm×n is
the set of m× n learnable parameters.

3. EXPERIMENTS AND DISCUSSION

3.1. Implementation Details

We evaluate our inpainting network on two datasets: 360◦

StreetView [12] (360-SP) and 3D60 [13, 14, 15]. 3012 im-

ages in 3D60 and 2017 images in 360-SP are used as training
data. Both the training images and testing images are resized
to 512×256. We implement our model using Pytorch and
all experiments are conducted on Nvidia TiTanXp GPU. Our
model is optimized using Adam optimizer. The learning rates
of generator, sub-discriminatorDERP , sub-discriminatorDV

are 0.0001, 0.0001 and 0.00001, respectively.

3.2. Comparison with other methods

We compare our model with the following GAN-based base-
lines: the planar image inpainting models Contextual Resid-
ual Aggregation(CRA) [6] and LBAM [5], and the PI model
PIINET [9]. All the baseline models are re-trained separately
on 3D60 and 360-SP datasets.

Fig. 3 shows the qualitative comparison results, (c) and
(d) are the viewports corresponding to the green box of (a)
and (b). The result of PIINET is obviously the worst among
all methods, which is limited by its unstable training process.
Surpassing the PIINET, LBAM still generates blurry results
especially in 360-SP datasets, and over-smoothing results are
undesirable for viewport viewing. Similarly, CRA produces
discontinuous texture in both Figs. 3(a) and (b). In contrast,
our model repairs the damaged roof with windows perfectly
in Figs. 3(a) and also obtains reasonable results in Fig. 3(b).



Table 1. SSIM and PSNR comparison on 3D60 and 360-SP datasets

Dataset
ERP domain Viewport domain

SSIM PSNR(dB) SSIM PSNR(dB)
Mask 0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5

3D60
LBAM [5] 0.92 0.84 0.73 0.53 32.62 28.03 23.69 19.20 0.91 0.84 0.78 0.49 40.28 32.38 28.67 19.59

CRA[6] 0.93 0.85 0.72 0.59 33.49 26.83 23.35 20.92 0.93 0.84 0.79 0.54 42.15 30.12 28.31 22.51
PIINET[9] 0.68 0.61 0.51 0.32 20.68 17.54 14.85 11.79 0.67 0.63 0.53 0.35 24.48 21.13 17.13 13.08

Ours 0.940.940.94 0.880.880.88 0.790.790.79 0.620.620.62 36.0236.0236.02 30.2030.2030.20 26.0726.0726.07 22.2022.2022.20 0.950.950.95 0.880.880.88 0.830.830.83 0.610.610.61 43.5743.5743.57 35.8635.8635.86 32.1732.1732.17 24.2724.2724.27

360-SP
LBAM [5] 0.930.930.93 0.85 0.74 0.54 33.44 28.35 24.99 21.23 0.92 0.86 0.73 0.51 38.66 31.25 27.65 21.35

CRA[6] 0.78 0.71 0.61 0.44 25.51 24.28 21.94 19.23 0.68 0.66 0.56 0.38 28.01 27.24 22.70 18.83
PIINET[9] 0.89 0.81 0.67 0.44 22.76 19.62 16.58 14.03 0.93 0.86 0.69 0.48 23.12 23.88 17.77 14.49

Ours 0.930.930.93 0.860.860.86 0.770.770.77 0.570.570.57 34.3334.3334.33 28.7528.7528.75 25.4625.4625.46 21.4321.4321.43 0.950.950.95 0.880.880.88 0.740.740.74 0.520.520.52 39.1939.1939.19 32.0932.0932.09 28.3628.3628.36 22.3722.3722.37

Input CRA[6] LBAM[5]

Original PIINET[9] Ours

(a)

Input CRA[6] LBAM[5]

Original PIINET[9] Ours

(b)

Original CRA[6] LBAM[5] PIINET[9] Ours

(c)

Original CRA[6] LBAM[5] PIINET[9] Ours

(d)

Fig. 3. Visual comparison of our model with baselines. Examples of inpainted images on (a) 360-SP and (b) 3D60 dataset, and
the corresponding viewports (c) and (d).

Further, it achieves the better visual quality of viewports in
Figs. 3(c) and (d) than the other baselines.

We also compare our model quantitatively with baselines
with mask ratios from 0.2 to 0.5, as shown in Table 1. We
randomly select three viewports with 90◦ FOV for viewport
quality evaluation. Table 1 shows that CRA performs well in
3D60, but the inpainting performances degrades for 360-SP.
Among all the baselines, PIINET performs poorly. Compara-
bly, our model behaves favorably both in two datasets. In spe-
cific, the SSIM for viewport domain of 3D60 of our method
is higher than LBAM with 12 percent when mask ratio is 0.5.

Table 2. Ablation study on 360-SP datasets
ERP domain Viewport domain

SSIM PSNR(dB) SSIM PSNR(dB)
Mask 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4

(a) 0.90 0.67 24.86 18.22 0.91 0.70 30.03 18.23
(b) 0.92 0.74 31.91 23.98 0.91 0.74 37.33 25.00
(c) 0.93 0.76 34.40 25.25 0.93 0.75 39.11 25.63

3.3. Ablation Study

We conduct the ablation study on the 360-SP dataset. We
modify the second stage generative network(SSGN) in [6] as
our generative network. We decompose our algorithm into the
sub-algorithms based on the existence of (a) SSGN, (b) SSGN

with latitude-adaptive feature fusion module, and (c) SSGN
with both latitude-adaptive feature fusion module and cross-
domain discriminator. Experimental results for both ERP and
viewport images are shown in Table 2. It can be seen that
the latitude-adaptive feature fusion module plays an impor-
tant role in generating more accurate results. The two metric
values for viewports are further improved when adding cross-
domain discriminator, showing that it provides the effective
viewport-oriented guidance.

4. CONCLUSION

In this paper, we propose a viewport-oriented PI inpainting
network that enables more reasonable results for viewports.
Unlike other PI inpainting methods, we solve this problem
with fully consideration of the distortion from PI transfer-
ring to viewports. By introducing the latitude-adaptive fea-
ture fusion module, our network is effective in capturing and
generating the less-distorted features. Furthermore, the cross-
domain discriminator is presented to guide the generative net-
work for better results. Qualitative and quantitative experi-
ments show that our method can obtain superior results espe-
cially in viewports.
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